Algorithms & Techniques for Efficient and
Effective Nearest Neighbours Classification

PhD Thesis

Stefanos Ougiaroglou

Dept. of Applied Informatics
School of Information Sciences,
University of Macedonia,
Thessaloniki, Greece




Thesis publications (1/4)

Journal papers:

Stefanos Ougiaroglou, Georgios Evangelidis, “RHC: Non-parametric cluster-based data
reduction for efficient k-NN classification”, Pattern Analysis and Applications,
Springer, accepted with minor revision, revision is under review (LF.: 0.814 )

Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos “FHC: An adaptive fast
hybrid method for k-NN classification”, Logic Journal of the IGPL, Oxford journals,
accepted with major revision, revision is under review (L.F.: 1.136)

Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient data abstraction using weighted
IB2 prototypes”, Computer Science and Information Systems (ComSIS), to appear
(LF.:0.549)

Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient k-NN Classification based on
Homogeneous Clusters”, Artificial Intelligence Review, Springer (LF.: 1.565)

Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient editing and data abstraction by
finding homogeneous clusters”, under review



Thesis publications (2/4)

Book chapters:

 Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou, Georgios Evangelidis,
Dimitris A. Dervos, “Applying prototype selection and abstraction algorithms for
efficient time series classification”, In “Artificial Neural Networks-Methods and
Applications in Bio-/Neuroinformatics (Series in Bio-/Neuroinformatics)”, Springer, to
appear



Thesis publications (3/4)

Conference papers (1/2):

Stefanos Ougiaroglou, Georgios Evangelidis, “EHC: Non-parametric Editing by finding
Homogeneous Clusters”, FoIKS 2014, Springer/LNCS 8367, pp. 290-304, Bordeaux, France,
2014

Stefanos Ougiaroglou, Georgios Evangelidis, “AIB2: An Abstraction Data Reduction
Technique based on IB2”, BCI 2013, ACM ICPS, pp. 13-16, Thessaloniki, Greece, 2013

Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou, Georgios Evangelidis,
Dimitris Dervos, “Applying general-purpose Data Reduction Techniques for fast time
series classification”, ICANN 2013, Springer/LNCS 8131, pp. 34-41, Sofia, Bulgaria, 2013

Stefanos Ougiaroglou, Georgios Evangelidis, “A Fast Hybrid k-NN Classifier based on
Homogeneous Clusters”, AIAI 2012, IFIP AICT 381, Springer, pp. 327-336, Halkidiki,
Greece, 2012

Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient Dataset Size Reduction by
finding Homogeneous Clusters”, BCI 2012, ACM ICPS, pp. 168-173, Novi Sad, Serbia, 2012

Stefanos Ougiaroglou, Georgios Evangelidis, “Fast and Accurate k-Nearest Neighbor
Classification using Prototype Selection by Clustering”, PCI 2012, IEEE CPS, pp.
168-173, Piraeus, Greece, 2012



Thesis publications (3/4)

Conference papers (2/2):

Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “An Adaptive Hybrid
and Cluster-Based Model for speeding up the k-NN Classifier”, HAIS 2012,
Springer/LNCS 7209, pp. 163-175, Salamanca, Spain, 2012

Stefanos Ougiaroglou, Georgios Evangelidis, “A Simple Noise-Tolerant Abstraction
Algorithm for Fast k-NN Classification”, HAIS 2012, Springer/LNCS 7209, pp.210-221,
Salamanca, Spain, 2012

Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “A Fast Hybrid
Classification Algorithm based on the Minimum Distance and the k-NN
Classifiers”, SISAP 2011, ACM, pp. 97-104, Lipari island, Italy, 2011

Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “An Extensive
Experimental Study on the Cluster-based Reference Set Reduction for speeding-up
the k-NN Classifier”, IC-ININFO 2011, pp. 12-15, Kos island, Greece, 2011

Stefanos Ougiaroglou, Georgios Evangelidis, “WebDR: A Web Workbench for Data
Reduction”, under review



A. Background knowledge & Related work



k-NN Classification (1/2)

A classifier is a data mining algorithm that attempts to map
data to a set of classes

k-NN Classifier:

Extensively used and eftective lazy classifier
Easy to be implemented

It has many applications

It works by searching the database for the k
nearest items to the unclassified item

The k nearest items determine the class where
the new item belongs to

The “closeness” is defined by a distance metric



k-NN Classification (2/2)

k-NN example

- k=3, query point is assigned to class “circle”
- k=5, it is assigned to class “square”




Weaknesses / Thesis motivation

High computational cost: k-NN classifier needs to compute all
distances between an unclassified item and the training data

e.g., 100,000 training items * 50,000 new items = 5 Billions distances

High storage requirements: The training database must be
always available

Noise sensitive algorithm: Noise and mislabeled data, as well
as outliers and overlaps between regions of classes affect
classification accuracy



Method categories for efficient and effective
k-NN classification

- Data Reduction Techniques (DRTs)
- Cluster-based methods (CBMs)

- Multi-attribute Indexing methods



Data Reduction Techniques (1/6)

Data Reduction Technigues
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Data Reduction Techniques (2/6)

Condensing and Prototype Abstraction (PA) algorithms

They deal with the drawbacks of high computational
cost and high storage requirements by building a
small representative set (condensing set) of the
training data

Condensing algorithms select and PA algorithms
generate prototypes

The idea is to apply k-NN on this set attempting to
achieve as high accuracy as when using the

initial training data at much lower cost and
storage requirements



Data Reduction Techniques (3/6)

(a) Training set (b) Condensing set



Data Reduction Techniques (4/6)

Editing algorithms

- They aim to improve accuracy rather than achieve high
reduction rates

- They remove noisy and mislabeled items and
smooth the decision boundaries. Ideally, they
build an a set without overlaps between the classes

- The reduction rates of PA and condensing algorithms
depend on the level of noise in the training data

- Editing has a double goal: accuracy improvement and
effective application of PA and condensing algorithms



Data Reduction Techniques (5/6)
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Data Reduction Techniques (6/6)
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Cluster-based Methods (CBMs)

CBM:s idea:

- They pre-process the training data and placed them into
clusters

- For each new item, they dynamically form a training
Subset (reference set) of the initially data that is used to
classity new data

- The training subset is the union of some clusters

- Contrary to DRTs, CBMs do not reduce the storage
requirements



DRTs & CBMs implemented during the PhD

Prototype Selection algorithms

Condensing algorithms:

- Hart's Condensed Nearest Neighbour rule (CNN-rule)
- Instance Based learning 2 (IB2)

- Prototype Selection by Clustering (PSC)

Editing algorithms

- Edited Nearest Neighbour rule (ENN-rule)
- All-k-NN

- Multiedit

Prototype Abstraction algorithms
- Reduction by Space Partitioning 3 (RSP3)

Cluster-based methods
-  Hwang and Cho method (HCM)



B. Contribution: Data Reduction Techniques



Reduction through Homogeneous Clusters (1/5)

Motivation/Weaknesses of Prototype Abstraction and
condensing algorithms:

- They usually involve a costly, time-consuming preprocessing
step on the training set

- Many algorithms are parametric

- The resulting condensing set may depends on the order of items
in the training set

- Although some algorithms can achieve high RR, the accuracy of
the classifier is affected

- Although some algorithms produce condensing sets that achieve
accuracies close to those achieved by the non-reduced training
sets, RR are not high



Reduction through Homogeneous Clusters (2/5)

Properties of RHC:
- It is an abstraction DRT

- Fast execution of the reduction procedure (low
pre-processing cost)

- High reduction rates

- High classification accuracy

- Non-parametric algorithm

- It is based on the well-known k-Means clustering

- Its condensing set does not depend on the order of
the training data



Reduction through Homogeneous Clusters (3/5)

RHC idea:

- RHC continues constructing clusters until all of them
are homogeneous

- A cluster is homogeneous if all items that have been
assigned to it are of a specific class

- The centroids of the homogeneous clusters  constitute
the condensing set



Reduction through Homogeneous Clusters (4/5)

Initially, RHC considers the dataset as a non-homogeneous
cluster
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Reduction through Homogeneous Clusters (4/5)

RHC computes the mean item for each class in the data
(class-mean)
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Reduction through Homogeneous Clusters (4/5)

RHC executes k-means clustering using the two class-means
as initial means and builds two clusters




Reduction through Homogeneous Clusters (4/5)

RHC stores the cluster-mean of cluster A to the condensing set
and computes a class-means for each class in B




Reduction through Homogeneous Clusters (4/5)

k-means is executed on the data of B using as initial means
the class-means and produces two clusters




Reduction through Homogeneous Clusters (4/5)

C and D are homogeneous. RHC stores their means to the
condensing set

RHC Condensing set



Reduction through Homogeneous Clusters (5/5)

Algorithm RHC
Input: T'S
Qutput: C'S

1: {Stage 1: Queue Initialization}
2: Queue +— @
3 Enqueue(QQueue, T'S)
4: {Stage 2: Construction of condensing set}
5: CS + @
6: repeat
7. (' <« Dequeue(QQueue)
g if C'is homogeneous then
9: r +— mean of C
10: CS+ CSU{r}
11: else
12: M + @ {M is the set of class-means}
13: for each class L in (' do
14: mj < mean of L
15: M — MU {H.r.L}
16 end for
17: NewClusters + K-MEANS(C', M)
18: for each cluster C' € NewC'lusters do
19: Enqueue(QQueue, C')
20: end for
21: ___end if
22: until IsEmpty(Queue)

23 return C'5




The dynamic RHC algorithm (1/4)

Motivation:

Most DRTs are memory-based. This implies that the whole
training set must reside in main memory. Thus, they are
inappropriate for large datasets that cannot fit into main
memory or for devices with limited main memory

Most DRTs cannot consider new training items after the
construction of the condensing set. They are inappropriate
for dynamic/streaming environments where new training
items are gradually available



The dynamic RHC algorithm (2/4)

Properties of dynamic RHC (dRHC)

- dRHC is an incremental version of RHC which inherits all the
good properties of RHC

- dRHC is a dynamic prototype abstraction algorithm that
incrementally builds its condensing set.

Therefore:

- dRHC is appropriate for dynamic/streaming environments
where new training data is gradually available

- dRHC is appropriate for very large datasets that can not fit in
main memory



The dynamic RHC algorithm (3/4)
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The dynamic RHC algorithm (4/4)
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The dynamic RHC algorithm (4/4)



The dynamic RHC algorithm (4/4)
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The dynamic RHC algorithm (4/4)
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The dynamic RHC algorithm (4/4)
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The dynamic RHC algorithm (4/4)
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RHC & dRHC: Experimental study (1/9)

Dataset Size Attributes | Classes Segiment
size
Letter Recognition (LR) 20000 16 26 2000
Magic G. Telescope (MGT) 19020 10 2 1902
Pen-Digits (PD) 10992 16 10 1000
Landsat Satellite (LS) 6435 36 6 572
Shuttle (SH) 58000 9 7 1856
Texture (TXR) 5500 40 11 440
Phoneme (PH) 5404 5 2 500
KddCup (KDD) 494020/141481 36 23 1000
Balance (BL) 625 4 3 100
Banana (BN) 5300 2 2 530
Ecoli (ECL) 336 7 8 200
Yeast (YS) 1484 8 10 396
Twonorm (TN) 7400 20 2 592
MONK 2 (MN2) 432 6 2 115




RHC & dRHC: Experimental study (2/9)

Accuracy / non-edited data

Dataset | 1I-NN | ENN | CNN | IB2 | RSP3 ETSC E.JSC E.JSC E.JSC .PSC RHC | dRHC
=2 | =4 | ]=6 | =8 | =10
LR 95.83 | 9498 | 92.84 | 91.98 |95.43 | 82.73 | 85.65 | 87.14 | 87.73 | 88.67 | 93.59 | 93.93
MGT | 78.14 | 80.44 | 74.54 |71.97 | 74.69 | 63.51 | 63.95 | 63.95|64.28 | 64.24 | 71.97 | 72.97
PD 99.35 1 99.30 | 98.68 | 98.04 | 99.05 | 95.73 | 96.64 | 96.26 | 96.90 | 96.93 | 98.30 | 98.49
LS 90.60 | 90.29 | 83.21 | 86.87 | 90.57 | 82.42 | 83.29 | 83.93 | 83.90 | 84.32 | 88.95 | 88.50
SH 99.82 | 99.79199.76 | 99.73 | 99.75 | 99.67 | 98.24 | 97.93 | 98.82 | 95.96 | 98.09 | 99.65
TXR |99.02 |98.64|97.16 | 96.35|98.29| 96.13 | 94.96 | 94.84 | 94.46 | 94.78 | 97.04 | 97.60
PH 90.10 | 88.14 | 87.82 | 85.57 | 86.94 | 71.41|75.19|75.17 |74.70 | 75.63 | 85.59 | 85.38
KDD |99.71 - 99.66 | 99.48 | 99.60 | 95.50 | 96.18 | 96.68 | 96.89 | 96.95 | 99.39 | 99.42
BL 78.4 - 70.88 | 70.72 | 73.28 | 65.92 | 66.40 | 70.88 | 68.00 | 68.32 | 68.64 | 70.56
BN 86.91 | 89.36 | 85.62 | 83.81 | 84.00 | 57.60 | 58.00 | 56.87 | 57.49 | 58.70 | 83.28 | 82.79
ECL 79.78 - 72.05 | 66.97 | 73.53 | 57.16 | 63.39 | 66.97 | 68.16 | 66.37 | 68.76 | 69.35
YS 52.02 - 49.06 | 46.02 | 50.47 | 46.03 | 45.01 | 47.84 | 46.77 | 47.71 | 48.85 | 48.38
TN 94.88 | 95.69| 92.00 | 89.15 | 92.68 | 78.74 | 79.08 | 79.78 | 80.49 | 80.12 | 88.69 | 93.08
MN2 | 90.51 | 89.58 | 95.84 |93.75|91.22 | 94.43 |195.14 | 90.06 | 92.58 | 93.52 | 94.68 | 97.68
Avg 88.22 | 92.62| 86.01 | 84.32 | 86.39 | 77.64|78.65|79.16 | 79.37 | 79.44 | 84.70 | 85.56




RHC & dRHC: Experimental study (3/9)

Reduction Rate / non-edited data

Dataset | ENN | CNN | IB2 | RSP3 E.JSC E.JSC E.JSC E.JSC .PSC RHC | dRHC
J=2 =4 J=6 =8 =10

LR 433 | 83.54 | 85.66 | 61.98 | 81.40 | 79.76 | 79.46 | 79.88 | 79.90 | 88.08 | 88.18
MGT 20.08 | 60.08 | 70.60 | 53.70 | 70.71 | 71.05 | 71.58 | 71.81 | 71.60 | 73.76 | 74.62
PD 0.67 | 95.36 | 96.23 | 89.22 | 91.44 | 92.86 | 93.73 | 94.42 | 94.83 | 96.52 | 97.23
LS 9.07 | 80.22 | 84.62 | 73.19 | 84.67 | 84.79 | 84.84 | 84.93 | 84.95 | 89.84 | 88.35
SH 0.18 | 99.37 | 99.44 | 98.59 | 96.88 | 97.68 | 97.87 | 98.33 | 98.54 | 99.55 | 99.50
TXR 1.24 | 91.90 | 93.33 | 83.31 | 86.81 | 89.33 | 90.62 | 91.29 | 91.54 | 94.70 | 94.95
PH 11.25 | 76.04 | 80.85 | 69.94 | 81.31 | 81.56 | 81.32 | 81.39 | 81.54 | 80.71 | 82.34
KDD - 99.12 | 99.26 | 98.54 | 99.13 | 99.09 | 99.09 | 99.09 | 99.07 | 99.19 | 99.22
BL - 65.72 | 69.36 | 64.64 | 77.8 | 77.44 | 78.04 | 77.2 | 75.88 | 78.00 | 78.12
BN 11.53 | 77.44 | 83.27 | 75.21 | 85.59 | 85.70 | 85.77 | 85.89 | 85.81 | 79.68 | 82.41
ECL - 59.55 | 68.77 | 52.27 | 74.50 | 72.19 | 71.08 | 67.88 | 65.65 | 67.58 | 70.26
YS - 32.68 | 4482 | 27.36 | 55.32 | 55.25 | 53.84 | 53.81 | 54.23 | 4983 | 51.23
TN 3.61 | 82.09 | 88.25 | 84.56 | 95.73 | 94.85 | 94.57 | 94.78 | 94.98 | 96.63 | 95.37
MN2 208 | 87.23 | 91.68 | 61.33 | 45.31 | 49.02 | 61.16 | 57.34 | 60.23 | 96.47 | 96.88
Avg 6.40 | 77.88 | 82.58 | 70.99 | 80.47 | 80.76 | 81.64 | 81.29 | 81.34 | 85.04 | 85.62




RHC & dRHC: Experimental study (4/9)

Preprocessing Cost / non-edited data

Dataset| ENN | CNN | IB2 | RSP3 E.,SC E.JSC I.,SC E.JSC .PSC RHC |dRHC
J=2 =4 ]=6 J=8 =10
LR 127.99 |163.03|23.37| 326.52 | 66.32 |110.06| 129.16 | 165.32 | 169.92 |41.85| 19.57
MGT | 115.76 [281.49|34.61| 511.67 | 23.95 | 17.21 | 22.68 | 27.09 | 33.47 | 4.08 | 26.03
PD 38.65 | 11.75 | 1.78 | 86.66 6.52 | 15.93 | 28.48 | 35.23 | 3697 | 2.88 | 1.44
LS 13.25 | 17.99 | 2.22 | 37.70 2.96 | 5.85 8.41 10.11 | 10.50 | 1.69 | 1.53
SH |1076.46| 45.30 | 8.26 |17410.18|127.20| 54.07 | 148.35 | 222.77 | 252.61 |16.83 | 7.68
TXR 9.68 5.65 | 0.84 | 27.63 3.15 | 790 | 10.71 | 14.49 | 16.76 | 3.63 | 0.68
PH 935 | 13.45 | 1.96 | 20.31 1.08 | 0.94 2.08 2.79 3.12 | 0.66 | 1.64
KDD - 384.90|55.58|20278.87(212.23|575.80|1161.43|2054.23|1902.41|81.59 | 57.40
BL - 0.21 | 0.04 0.3 0.08 | 0.12 0.16 0.18 0.24 | 0.05 | 0.03
BN 8.99 | 11.49 | 1.58 | 18.76 191 | 1.44 2.39 4.63 437 | 0.56 | 1.53
ECL - 0.06 {0.003] 0.08 0.06 | 0.11 0.11 0.12 0.15 | 0.03 | 0.02
YS - 1.41 | 0.19 2.12 0.70 | 117 1.64 1.94 1.99 | 0.34 | 0.31
TN 17.52 | 22.13 | 2.07 | 37.13 1.76 | 5.40 6.76 6.93 837 | 1.64 | 0.70
MN2 0.06 0.04 |0.006] 0.13 0.014 | 0.07 0.08 0.12 0.13 |0.007 | 0.004
Avg | 141.77 | 68.49 | 9.46 | 2768.43 | 32.00 | 56.86 | 108.75 | 181.85 | 174.36 8.47

11.17




RHC & dRHC: Experimental study (5/9)

Accuracy / edited data

Dataset | 1-NN |[ENN | CNN | IB2 | RSP3 E.,SC E.JSC E.JSC E.,SC .PSC RHC |dRHC
=2 | ]=4 | J=6 | ]=8 | =10
LR 95.83 194.98|92.06 |91.38| 94.61 |382.29 |85.68|87.00 |87.97 | 88.46|92.72 | 93.14
MGT |78.14 |80.44|79.26|78.01| 79.09 |72.50|72.71|73.33|73.31|73.35|77.78 | 78.33
PD |99.35|99.30|98.60 |98.17 | 99.03 |97.30|97.04|97.11|97.29|97.11 | 98.45 | 98.57
LS 90.60 |90.29| 88.66 |88.05| 89.90 | 83.53 |84.60|84.91 |84.85|84.99|89.14 | 88.81
SH |99.82(99.79]99.73|99.72| 99.67 |99.56 |98.40|98.53 |98.82|98.41 | 99.58 | 99.62
TXR [99.02|98.64|96.93 |95.75| 97.91 | 96.15|95.46|95.26 |94.91|95.67 | 97.11 | 97.38
PH |90.10 |88.14|86.88 |86.33| 86.49 |80.74|81.07|81.75|81.42|81.70 | 85.40 | 85.55
BN |86.91|89.36|88.87 |88.68| 88.64 |81.98|81.51|82.26|80.68|80.79|88.09 | 88.94
TN | 94.88 |95.69|92.30 |191.22| 94.69 |82.58 |83.14|83.77 |85.23|85.49|93.11 | 95.45
MN2 |90.51 |89.58|95.37 |94.46| 90.07 |95.13|93.98|94.90|93.06|94.21|96.75| 96.31
Avg | 92.52|92.62|91.87 |91.18| 92.01 |87.18 |87.36|87.88 |87.75|88.02 | 91.81 | 92.21




RHC & dRHC: Experimental study (6/9)

Reduction Rate / edited data

Dataset | ENN | CNN | IB2 | RSP3 ETSC ETSC E.,SC ITSC .PSC RHC | dRHC
J=2 | J=4 | )=6 | =8 | )=10
LR 433 | 87.75|88.88 | 66.12 | 81.95 | 80.25 | 80.14 | 80.80 | 81.22| 90.34 | 91.00
MGT |20.08 | 90.09 | 92.05 | 84.20 | 85.57 | 85.67 | 86.61 | 86.57 | 86.63 | 93.06 | 93.40
PD 0.67 | 96.44 |97.00 | 90.41 | 91.95|93.50 | 94.22 | 95.11 | 95.70 | 97.19 | 97.79
LS 9.07 |91.44 |92.98 | 85.84 | 90.25 | 90.65 | 90.95 | 91.26 | 91.48 | 95.09 | 94.94
SH 0.18 [99.58 |99.61 | 98.88 | 97.10 | 97.89 | 98.04 | 98.55 | 98.68 | 99.66 | 99.65
TXR | 1.24 |93.45[94.32 | 85.00 | 87.82 | 90.50 | 91.76 | 92.60 | 92.42 | 95.58 | 95.85
PH [11.25]90.49 |91.6285.13|87.70| 88.04 | 87.80 | 87.94 | 87.91| 92.10 | 92.43
BN | 11.5395.31|95.87 | 93.72 | 95.66 | 95.78 | 96.02 | 96.28 | 96.40 | 95.66 | 95.87
TN | 3.61 | 89.49 |92.36 | 89.63 | 98.55| 98.28 | 98.07 | 98.02 | 97.88 | 98.52 | 97.85
MN2 | 2.08 |88.84|93.12|62.25 |44.34 | 53.24 | 60.92 | 61.16 | 62.95 | 97.05 | 96.94
Avg | 6.40 [92.29]93.78 | 84.12 | 86.09 | 87.38 | 88.45 | 88.83 | 89.13 | 95.43 | 95.57




RHC & dRHC: Experimental study (7/9)

Preprocessing Cost / edited data

Dataset| ENN | CNN | IB2 | RSP3 I.,SC E.JSC E.JSC E.JSC .PSC RHC |[dRHC
=2 =4 | J=6 J=8 =10
LR 127.99 |112.20|18.35| 300.51 | 55.13 |94.76|127.84|138.41|178.45| 31.05 | 15.15
MGT | 115.76 | 68.61 | 8.48 | 318.82 | 11.44 |10.15| 11.28 | 12.42 | 21.75 | 2.83 | 6.18
PD 38.65 9.25 | 1.51 85.16 6.73 |17.57| 27.65 | 32.33 | 33.74 | 2.83 | 1.25
LS 13.25 6.49 | 0.99 | 30.64 2.86 | 483 | 6.79 997 | 11.82 | 1.73 | 0.72
SH 1076.46 | 26.02 | 6.35 |15652.75|107.47|52.46|176.21 |189.71|213.61| 22.41 | 6.05
TXR 9.68 390 | 0.72 | 27.04 3.35 |10.33| 9.60 | 11.10 | 15.78 | 3.00 | 0.57
PH 9.35 3.57 | 0.86 15.67 0.68 | 1.04 | 1.89 218 | 3.15 | 0.47 | 0.73
BN 8.99 2.50 |0.435| 14.50 1.39 | 1.43 | 2.10 2.28 | 296 | 0.53 | 0.434
TN 17.52 | 12.50 | 1.41 34.20 1.81 | 3.13 | 4.02 6.38 | 9.56 | 1.36 | 0.34
MN2 0.06 0.03 |0.005 0.12 0.01 | 0.06 | 0.07 0.12 | 0.13 | 0.007 | 0.004
Avg 141.77 | 24.71 | 3.91 | 1647.94 | 19.09 |19.58| 36.75 | 40.49 | 49.10 | 6.62 | 3.14




RHC & dRHC: Experimental study (8/9)

Wilcoxon signed ranks tests / non-edited data

Methods ACC RR PC Overall
w/l/t | Wile. | w/l/t | Wile. | w/l/t | Wile. | w/l/t | Wilc.
RHC vs CNN 2/12/0 | 0.009 | 14/0/0 | 0.001 | 14/0/0 | 0.001 | 12/2/0 | 0.005
RHC vs IB2 8/5/1 0.311 | 10/4/0 | 0.030 | 5/9/0 0.397 | 10/4/0 | 0.022
RHC vs RSP3 1/13/0 | 0.009 | 14/0/0 | 0.001 | 14/0/0 | 0.001 | 14/0/0 | 0.001
RHC vs PSC (j=2) 13/1/0 | 0.002 | 10/4/0 | 0.245 | 12/2/0 | 0.011 | 13/1/0 | 0.002
RHC vs PSC (j=4) 12/2/0 | 0.002 | 10/4/0 | 0.245 | 14/0/0 | 0.001 | 13/1/0 | 0.001
RHC vs PSC (j=6) 13/1/0 | 0.004 | 9/5/0 | 0.221 | 14/0/0 | 0.001 | 11/3/0 | 0.005
RHC vs PSC (_] =8) 13/1/0 | 0.002 | 10/4/0 | 0.109 | 14/0/0 | 0.001 | 13/1/0 | 0.002
RHC wvs PSC (j=10) 14/0/0 | 0.001 | 11/3/0 | 0.074 | 14/0/0 | 0.001 | 13/1/0 | 0.002
dRHC vs CNN 5/9/0 0.363 | 14/0/0 | 0.001 | 14/0/0 | 0.001 | 14/0/0 | 0.001
dRHC vs IB2 9/5/0 | 0.026 | 12/2/0 | 0.002 | 11/3/0 | 0.041 | 11/3/0 | 0.005
dRHC vs RSP3 2/12/0 | 0.026 | 14/0/0 | 0.001 | 14/0/0 | 0.001 | 14/0/0 | 0.001

dRHC vs PSC (j=2) | 13/1/0 | 0.001 | 10/4/0 | 0.124 | 12/2/0 | 0.019 | 13/1/0 | 0.001

dRHC vs PSC (j=4) | 14/0/0 | 0.001 | 11/3/0 | 0.064 | 11/3/0 | 0.026 | 14/0/0 | 0.001

dRHC vs PSC (j=6) | 13/1/0 | 0.001 | 11/3/0 | 0.041 | 13/1/0 | 0.004 | 12/2/0 | 0.002

dRHC vs PSC (j=8) | 14/0/0 | 0.001 | 12/2/0 | 0.030 | 14/0/0 | 0.001 | 13/1/0 | 0.001

dRHC vs PSC (j=10) | 14/0/0 | 0.001 | 12/2/0 | 0.026 | 14/0/0 | 0.001 | 13/1/0 | 0.001

dRHC vs RHC 10/4/0 | 0.048 | 11/3/0 | 0.056 | 11/3/0 | 0.109 | 13/1/0 | 0.006




RHC & dRHC: Experimental study (9/9)

Wilcoxon signed ranks tests / edited data

Methods ACC RR PC Overall
w/l/t | Wile. | w/l/t | Wile. | w/l/t | Wile. | w/l/t | Wilc.
RHC vs CNN 5/5/0 0.959 | 10/0/0 | 0.005 | 10/0/0 | 0.005 | 7/3/0 0.093
RHC vs IB2 6/4/0 0.114 9/1/0 | 0.013 | 3/7/0 0.169 7/3/0 0.074
RHC vs RSP3 1/9/0 0.074 | 10/0/0 | 0.005 | 10/0/0 | 0.005 | 10/0/0 | 0.005
RHC vs PSC (j=2) 10/0/0 | 0.005 | 8&/1/1 | 0.011 | 10/2/0 | 0.005 | 10/0/0 | 0.005
RHC vs PSC (j=4) 10/0/0 | 0.005 | 9/1/0 | 0.007 | 10/0/0 | 0.005 | 10/0/0 | 0.005
RHC vs PSC (j=6) 10/0/0 | 0.005 | 9/1/0 | 0.007 | 10/0/0 | 0.005 | 10/0/0 | 0.005
RHC vs PSC (j=8) 10/0/0 | 0.005 | 9/1/0 | 0.009 | 10/0/0 | 0.005 | 10/0/0 | 0.005
RHC vs PSC (j=10) 10/0/0 | 0.005 | 9/1/0 | 0.009 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs CNN 6/4/0 0.386 | 10/0/0 | 0.005 | 10/0/0 | 0.005 | &/2/0 | 0.017
dRHC vs IB2 8/2/0 | 0.037 | 9/0/1 | 0.008 | 9/0/1 | 0.008 | 8/2/0 | 0.017
dRHC vs RSP3 3/7/0 0.333 | 10/0/0 | 0.005 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs PSC (j=2) 10/0/0 | 0.005 9/1/0 | 0.009 | 9/1/0 | 0.009 | 10/0/0 | 0.005
dRHC vs PSC (j=4) 10/0/0 | 0.005 | 9/1/0 | 0.009 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs PSC (j=6) 10/1/0 | 0.005 8/2/0 | 0.013 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs PSC (j=8) 10/0/0 | 0.005 | 8/2/0 | 0.013 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs PSC (j=10) | 10/0/0 | 0.005 | 8/2/0 | 0.013 | 10/0/0 | 0.005 | 10/0/0 | 0.005
dRHC vs RHC 8/2/0 0.114 6/4/0 | 0.241 | 8/2/0 0.093 8/2/0 0.059




Editing through Homogeneous Clusters (1/3)

Motivation/Drawbacks of editing algorithms:

- Since all editing algorithms either extend ENN-rule or are
based on the same idea, they are parametric. Their performance
is dependent on costly trial-and-error procedures

- They require high preprocessing cost

Contribution

- Development of a novel, fast, non-parametric editing algorithm
that is based on a k-means clustering procedure that forms
homogeneous clusters



Editing through Homogeneous Clusters (2/3)

EHC properties

- It follows completely difterent strategy from that of
ENN-based approaches

- Fast execution
- Non-parametric

- It is based on k-means clustering

EHC idea:

- It continues constructing clusters until all of them are
homogeneous

- It removes the clusters that contain only one item
(they are considered as outliers, noise or close-border items)



Editing through Homogeneous Clusters (3/3)
Removal of a border item
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Editing through Homogeneous Clusters (3/3)
Removal of a border item
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Editing through Homogeneous Clusters (3/3)
Removal of a border item
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Editing through Homogeneous Clusters (3/3)
Removal of a border item
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Editing through Homogeneous Clusters (3/3)
Removal of a border item




Editing through Homogeneous Clusters (3/3)
Removal of a border item




Dataset |1-NN ENIﬁ-I ENN Ml{ltiedit Multiedit All!:'N”N AllENN EHC
(k=3)k=0)|n=3,E=2)|{(n=5,R=2)|(k=T)|(k=19)

Acc|78.14 | 80.44 | 80.57 76.75 75.26 80.76 80.86 |79.52
MGT RR - 20.08 | 19.20 39.98 42.36 29.67 3038 |10.70
PC - 115.76 | 115.76 2,839.55 1,447.93 115.76 | 115.76 | 4.08
Acc|90.60| 90.30 | 9043 86.79 86.03 90.12 90.16 |90.55

LS RR - 9.07 9.27 24.13 26.17 13.92 14.51 | 3.11
PC - 13.25 | 13.25 266.22 139.53 13.25 13.25 | 1.69
Acc|90.10| 88.14 | 87.53 80.77 79.72 86.55 86.23 |89.06

FH RR - 11.25 | 11.93 34.14 36.91 17.92 19.30 | 7.36
PC - 9.35 9.35 166.22 53.71 9.35 9.35 | 0.66
Acc|95.83| 94.98 | 94.87 70.94 58.35 94.28 94.00 |95.23

LIR RR - 4.33 4.44 43.43 56.59 7.31 7.97 3.95
pC - 127.99 [ 127.99 7,214.38 2,900.53 127.99 | 127.99 |41.85

Acc| 8691 | 89.36 | 89.55 89.83 90.38 89.509 | 89.79 |88.60

BN RR - 11.53 | 10.98 20.12 21.64 17.10 17.51 |10.65
pPC - 8.99 8.99 106.69 60.26 8.99 8.99 | 0.56
Acc|79.78 | 81.57 | 81.86 63.10 46.11 81.26 80.66 |82.16

ECL RR - 20.45 | 20.45 47.29 60.15 28.63 3048 |17.01
pPC - 0.036 | 0.036 0.100 0.055 0.036 0.036 |0.035
Acc|6836| 71.87 | 71.75 71.36 68.89 72.65 73.30 |70.32

PM RR - 30.16 | 29.43 53.07 58.96 45.56 46.24 | 16.59
pPC - 0.19 0.19 0.51 0.26 0.19 0.19 0.06
Acc|52.16| 56.47 | 57.07 52.90 50.54 58.29 58.42 | 54.45

YS RR - 45.73 | 43.89 74.34 80.93 59.90 61.25 |29.58
PC - 0.70 0.70 1.19 0.58 0.70 0.70 0.84

Acc| 82.58 | 89.64 | 89.74 86.47 85.55 89.73 89.84 | 87.55

LS-n RR - 19.82 | 18.45 38.33 40.19 29.64 3017 |10.93
PC - 13.25 | 13.25 139.02 78.43 13.25 13.25 | 2.00
Acc|82.14 | 86.94 | 86.70 81.31 79.29 86.31 85.90 |86.16
PH-n RR - 21.20 | 20.61 44.93 49.85 33.29 34.68 |17.66
PC - 9.35 9.35 52.65 31.74 9.35 935 | 0.71

Acc| 80.66| 82.97 | 83.01 76.02 72.01 82.95 8§2.92 |82.36

AVG RR - 19.36 | 18.87 41.98 47.38 28.29 29.25 |12.75
pPC - 29.89 | 29.89 1,078.65 471.30 29.89 29.89 | 5.25




EHC: Experimental study

Methods ACC PC Overall
w/l | Wile. | w/l | Wile. | w/l | Wilc.
EHC vs ENN (k=3) 4/6 | 0.126 | 9/1 | 0.013 | 4/6 | 0.333
EHC vs ENN (k=5) 4/6 | 0.169 | 9/1 | 0.013 | 4/6 | 0.333
EHC vs Multiedit (n=3, R=2) | 8/2 | 0.017 | 10/0 | 0.005 | 8/2 | 0.013
EHC vs Multiedit (n=5 9/1 1 0.009 | 9/1 | 0.013 | 9/1 | 0.007
EHC vs All-5-NN (k= ) 4/6 | 0386 | 9/1 | 0.013 | 4/6 | 0.646
EHC vs All-£-NN (k=9) 5/5 1 0508 | 9/1 | 0.013 | 5/5 | 0.575




Simultaneous editing and data abstraction by
finding homogeneous clusters

Editing and Reduction through Homogeneous Clusters
(ERHC):

Integration of EHC idea in RHC

ERHC is a variation of RHC that can effectively handle
datasets with noise (High reduction rates regardless the
level of noise in the data)

ERHC difters from RHC in one point: If an one-item cluster
is identified, it is removed, i.e., ERHC does not build a
prototype for this cluster



Dataset | Conv-1-NN | RHC | ENN-RHC | EHC-RHC | ERHC
Acc | 95825 | 93.585 | 92720 93.045 | 92.690
LIR  RR : 88.081 |  90.343 90.383 | 92.029
PC : 41.844 |  159.039 73.710 | 41.844
Acc | 99354 | 98299 | 98.453 98.472 | 98.626
PD  RR : 96516 | 97.189 97.589 | 97.448
PC : 2.882 | 41489 5521 2.882
Acc | 99822 | 98095 | 99.597 98.481 | 98.038
SH  RR : 99.550 |  99.658 99.669 | 99.690
PC 16.827 | 1098.864 32.695 | 16.827
Acc | 99018 | 97.036 | 97.109 96.873 | 97.364
TXR  RR : 94705 |  95.582 95.732 | 95.936
PC . 3.629 | 12,675 6.133 3.629
Acc | 86906 | 83.283 | 88.094 87.019 | 88.000
BN  RR : 79.684 |  95.660 93.000 | 90.330
PC : 0.562 9.519 1014 0.562
Acc | 90598 | 88951 | 89.138 88392 | 89.013
LS RR : 89.841 |  95.062 92.273 | 92.949
PC : 1.693 |  14.984 3.192 1.693
Acc | 78144 | 71966 | 77.781 74716 | 77.014
MGT  RR : 73.757 |  93.057 83.843 | 84.456
PC . 4.082 | 118591 7.480 1.082
Acc | 90100 | 85585 | 85.400 86.158 | 86.565
PH RR : 80.708 |  92.098 89.008 | 88.053
PC . 0.658 9.812 1.161 0.658
Acc | 68358 | 63.281 | 72.653 69.927 | 69.793
PM  RR : 63577 | 91.792 80.977 | 80.065
PC . 0.062 0.219 0.103 0.062
Acc | 82580 | 78819 | 88.578 84817 | 85377
LSn  RR : 76632 |  95.361 88.465 | 87.560
PC : 1.999 | 14744 3.637 1.999
Acc | 82143 | 75407 | 83.993 81255 | 84.030
PHn  RR : 64246 |  92.019 86394 | 81.910
PC . 0.706 | 116.164 1180 0.706
Acc | 88441 84937 | 88.501 87.196 | 87.865
Avg  RR : 82.482 |  94.347 90.667 | 90.039
PC : 6.813 | 145.100 12348 | 6.813




ERHC: Experimental study

Methods ACC RR PC Overall
w/l/t|Wile.| w/l/t |Wile.| w/l/t |Wilce.| w/l/t |Wilc.
ERHC vs RHC 9/2/0(0.016(11/0/0(0.003|0/0/11| 1 |11/0/0/0.003
ERHC vs ENN-RHC 4/7/010.286|4/7/0 10.041(11/0/0(0.003| 4/7/0 |0.248
ERHC vs EHC-RHC 8/3/010.033| 5/6/0 {0.328(11/0/0{0.003| 6/5/0 [0.790
EHC-RHC vs RHC 8/3/0(0.041(11/0/0(0.003|0/11/0({0.003|10/1/0]{0,004
EHC-RHC vs ENN-RHC|3/8/0(0.033| 4/7/0 |0.041|11/0/0/0.003| 4/7/0{0.213




The AIB2 algorithm (1/6)

IB2 is an one-pass and incremental variation of the
condensing CNN-rule

We improve the performance of IB2 by considering the
idea of prototype abstraction

Our contribution is the development of an abstraction
version of IB2 (AIB2) and an experimental study

AIB2 is faster and achieves higher reduction rates than
CNN-rule and IB2. AIB2 achieves higher accuracy than
B2



The AIB2 algorithm (2/6)

IB2 is a fast one-pass version of CNN-rule

Like CNN-rule:
- IB2 1s non-parametric
- IB2 is order dependent
- IB2 tries to keep only the close-border items

Contrary to CNN-rule:
- IB2 builds its condensing set incrementally
(appropriate for dynamic/streaming environments)
- IB2 does not require that all training data reside
into the main memory



The AIB2 algorithm (3/6)

Algorithm IB2

Input: 7'S Output: C'S

. pick an item of 7'S and move it to C'S

. foreachz € T'S do
NN < Nearest Neighbour of z in C'S

CS + CSU{z}
end if
TS + TS — {z}

1
2
)
4
5. if NNgass # Toass then
6
7
8
9

. end for
10: return CS




The AIB2 algorithm (4/6)

AIB2 idea: The prototypes should be at the center of the data area
they represent

To achieve this:
- AIB2 adopts the concept of prototype weight which denotes the
number of items it represents

- The weight values are used for updating the prototype in the
multidimensional space

Result:

- Higher classification accuracy (Better prototypes)

- Higher reduction rates (Fewer items enter condensing set)

- Lower preprocessing cost (Fewer items enter condensing set)



The AIB2 algorithm (5/6)

Algorithm  AIB2

Input: 7'S
Output: C'S

1: (._.:'Lg — Qj

2: pick an item y of T'S and move it to C'S
30 Yweight < 1
4: foreachrz € T'S do
5. NN < Nearest Neighbour of x in C'S
6: if JNT-PVT{;EQ.% 7& Lelass then
7: Lweight «—1
B _.:'Lg — (:;Sr I-_,_J {J}
9: else
10: for each attribute attr(i) do
AT AT _'n"rr_'nhr“ff.r.{ij K_'n'rr_'n#r“‘f..fﬁjtf—Fxrlfi.r.{f:l
11: ;\- ;\- ﬂitr'(i} — -'n"'r-'n"'rrt‘t.'t'ﬁft!+1
12: end for
13: D"Fp"rwﬁight N Arﬂrweight + 1
14: end if
15: TJSr — TJSr - {.I-'}
16: end for

17: return C'S




The AIB2 algorithm (6/6)

O

O

Current condensing set

+™

t®

d
qw=1}

O

Arrival of a new item

P{w=2)

O

Repositioning of the
nearest prototype



Dataset Conv-1-NN | CNN-rule IB2 AlIB2
Acc: 95.83 92.84 01.98 94.12

LIR RR: : 83,54 85.60 38.12
PC: : 163.03 23.37 20.10

Acc: 78.14 74.54 71.97 73.36

MGT RR: : 60.08 70.60 71.90
PC: : 281.49 34.61 33.05

Acc: 80.44 79.26 78.01 78.81
MGT-ENN RR: : 87.62 90.07 91.06
PC: : 68.61 8.48 7.65

Acc: 99.35 98.68 08.04 08.33

PD RR: : 05.36 096.23 97.19
PC: : 11.75 1.78 1.38

Acc: 90.60 88.21 86.87 39.42

LS RR: : 80.22 84.62 86.72
PC: : 17.99 2.22 1.92

Acc: 09 82 99.76 99.73 99,72

SH RR: : 99,37 99.44 99.46
PC: : 45.30 8.26 7.89

Acc: 99.02 97.16 96.35 97.69

TXR RR: : 91.90 03.33 94.95
PC: - 5.65 0.84 0.66

Acc: 90.10 87.82 85.57 84.92

PH RR: : 76.04 80.85 81.75
PC: : 13.45 1.96 1.84

Acc: 099.71 99.606 90 48 99.41

KDD RR: : 099.12 99.26 99.21
PC: : 384.90 55.58 58.78

Acc: 92.56 90.88 89.78 90.64

Average RR: : 85,92 88.90 90.04
PC: : 110.24 15.23 14.81




AIB2: Experimental study

Methods ACC RR PC Overall performance
W/L | Wilcoxon | W/L | Wilcoxon | W/L | Wilcoxon | W/L Wilcoxon

AIB2 vs CNN | 3/6 0.767 9/0 0.008 9/0 0.008 9/0 0.008

AIB2 vs IB2 6/3 0.066 8/1 0.015 8/1 0.086 7/2 0.028

IB2 vs CNN 0/9 0.008 9/0 0.008 9/0 0.008 9/0 0.008




General purpose DRTs for efficient time series
classification (1/3)

DRTs has been recently exploited for fast time series classification
(Both are parametric):

1.  Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Insight: efficient and effective instance selection
for time-series classification. 15th Pacific-Asia conference on Advances in knowledge discovery
and data mining - Part II. pp. 149-160. PAKDD’11, Springer (2011)

2.  Xi, X, Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification
using numerosity reduction. 23rd international conference on Machine learning. pp. 1033-1040.
ICML *06, ACM (2006)

Motivation:

- State-of-the-art non-parametric DRTs have not been evaluated on
time series data

- The idea of Prototype Abstraction has not been adopted for fast
time series classification

- RHC and AIB2 have not been evaluated on time series data



General purpose DRTs for efficient time series
classification (2/3)

State-of-the-art non-parametric DRTs are evaluated on time

series data:

- Original time series data (using all attributes)

- A reduced dimensionality representation of the same time
series data (12 dimensions, using Piecewise Aggregate
Approximation - PAA)

DRTs evaluated:

- Two condensing algorithms:
Condensing Nearest Neighbor (CNN) rule
The IB2 algorithm

- Three prototype abstraction algorithms:
Reduction by Space Partitioning v3 (RSP3)
Reduction through Homogeneous Clusters (RHC)
The AIB2 algorithm



General purpose DRTs for efficient time series
classification (3/3)

RSP3 achieved the highest accuracy. However, it is the slowest
method in terms of both preprocessing and classification cost

RHC, AIB2 and IB2 have much lower preprocessing cost than
CNN-rule and RSP3

RHC and AIB2 build the smallest condensing sets
RHC and AIB2 are usually more accurate than IB2 and CNN-rule

The 1-NN classification on the 12-dimensional datasets is very fast
while accuracy remains at high levels

Conclusion: One can obtain efficient time series classifiers by
combining condensing or prototype abstraction algorithms with
time-series dimensionality representations



Data Reduction through k-Means clustering

The thesis proposes the use of the means generated by k-means
clustering as a simple noise-tolerant approach (RkM algorithm)

For each class, RkM builds a number of clusters and their means
are placed into CS as prototypes of the class

The noisy items of a class are represented by a mean item lying in the
main area of the class. So RkM is a more noise-tolleran DRT

Examination of how the performance of two state-of-the-art DRTs
(CNN-rule and RSP3) are affected by the addition of noise



Prototype Selection by Clustering (PSC)

PSC is a recently proposed condensing algorithm whose main goal is
the fast execution of data reduction rather than high reduction rates

PSC is parametric. The user should provide the number of clusters
that will be built. The main goal of PSC is achieved by using a small
number of clusters

The thesis demonstrates that the reduction rate and the classification
accuracy achieved by PSC can be improved by generating a large
number of clusters



WebDR: A Web Workbench for Data Reduction
(https://ilust.uom.gr/webdr)

WebDR: A Web Workbench for Data Reduction

Hosted by:
Dataset explorer Read more... Gz
KEEL UCI
UCR k-Nearest Neighbour Classification Read more...
Data Reduction | k-Nearest Neighbour Classification Read more..

Developed usmg

Editing | k-Nearest Neighbour Classification Read more.. .. |\\ A

Editing | Data Reduction | k-Nearest Neighbour Classification Read more..

stoug@uom.gr

© 2013-2014. Developed by




WebDR: A Web Workbench for Data Reduction
(https://ilust.uom.gr/webdr)

WebDR: A Web Workbench for Data Reduction

Editing | Data Reduction | k-Nearest Neighbour Classification

Select dataset
Balance =
Banana
CBF
Ecoli-r
Face_All Select method

KDD_bigdata AlIKNN -
EHC

Landsat_Satellite_noise10 EHC2 Method's Parameter (If any):

Letter_Image_Recognition |* N 3]
MONK2 » Multiedit » *Read me

Magic_Gamma_Telescope
Pendigits ' Build edited set |
Phoneme
Phoneme_noise10
Pima =
Shuttle
Swedish_Leaf
Synthetic_Control
Texture
Two_Patterns

<]

back

© 2013-2014. Developed by




WebDR: A Web Workbench for Data Reduction
(https://ilust.uom.gr/webdr)

WebDR: A Web Workbench for Data Reduction

Editing | Data Reduction | k-Nearest Neighbour Classification

Preprocessing experimental measurements
for ENN on Landsat_Satellite dataset

Dataset files
Fold=1 Training set|Testing set|Condensing set
Fold=2 Training set|Testing set/Condensing set
Fold=3Training set|Testing set/Condensing set
Fold=4Training set|Testing set|Condensing set

Select method

Fold=5Training set|Testing set/Condensing set AIB2 [
Classes: 6 CNN
Attributes: 36 ERHC Method's Parameter (If any):
ERHC2 | :]
Fold/Items|Items in Edited set|Distance Computations » {:ESZC 1 » *Read me
1 | 5148 4677 13248378.000
2 |s148 4682 13248378.000 | Build condensing set |
3 [s5148 4673 13248378.000 RHC2 |-
4 | 5148 4695 13248378.000 RSP3
5 | 5148 4683 13248378.000 RkM  []
Averages
Prototypes/ Reduction Distance
Representatives Rate Computations
4682.000 9.052 13248378.000

I End ENN experiments (delete temporary files) |

© 2013-2014. Developed by




WebDR: A Web Workbench for Data Reduction
(https://ilust.uom.gr/webdr)

WebDR: A Web Workbench for Data Reduction

Editing | Data Reduction | k-Nearest Neighbour Classification

Preprocessing experimental measurements
for RHC on Landsat_Satellite dataset

Dataset files
Fold=1|Training set|Testing set|Condensing set
Fold=2|Training set|Testing set|Condensing set
Fold=3|Training set|Testing set|Condensing set
Fold=4|Training set|Testing set|Condensing set
Fold=5|Training set|Testing set|Condensing set

Classes: 6
Attributes: 36

k value:| 1 S|
Prototypes/ Distance * '

Fold|Items Representatives Computations .
WE: EFE L ' Run 5-Fold-Cross-Validation |
2 | 4682 242 1814746
3 | 4673 257 2175027
4 | 4695 268 1927169
5 | 4683 253 1303036

Averages
Prototypes/ Reduction Distance
Representatives Rate Computations
252.800 94,602 1729213.000

[ End RHC experiments (delete temporary files) |

© 2013-2014. Developed by




WebDR: A Web Workbench for Data Reduction
(https://ilust.uom.gr/webdr)

WebDR: A Web Workbench for Data Reduction

Editing | Data Reduction | k-Nearest Neighbour Classification

Preprocessing experimental measurements
for RHC on Landsat_Satellite dataset

Dataset files
Fold=1|Training set|Testing set/Condensing set Experimental measurements for
Fold=2|Training set|Testing set|Condensing set Landsat_Satellite dataset
Fold=3|Training set|Testing set|Condensing set
Fold=4{Training set|Testing set|Condensing set Classes: 6
Fold=5|Training set|Testing set/Condensing set Attributes: 36
Classes: 6 Fold Training/Testing | Classification Distanc_e
Attributes: 36 Items Accuracy Computations
1 244/1287 88.345 314028
Froit e, Distance 2 242/1287 88.7335 311454
FoldItems Representatives Computations 3 257/1287 89, 5882 330759
1 | 4677 244 1426087 4 268/1287 89,4328 344916
2 | 4682 242 1814746 5 253/1287 89 5882 325611
3 | 4673 257 2175027
4 | 4695 268 1927169 Averages
5 | 4683 253 1303036 Classification Accuracy|Distance Computations
§9.138 325353.600
Averages
Prototypes/ Reduction Distance
Representatives Rate Computations
252.800 94,602 1729213.000
' Go back and re-run classifier with different k value | ' End RHC experiments (delete temporary files) |

© 2013-2104. Developed by




C. Contribution: Hybrid Speed-up methods



Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (1/7)

Motivation

- Fast classification without costly preprocessing (without using
DRTs or Indexes)

Contribution:

- We purpose a Fast, Hybrid and Model-free classification algorithm
(FHCA) and two variations that combine the MDC and the
conventional k-NN classifier

- It avoids expensive preprocessing procedures and so, It can be
applied for repeated classification tasks in dynamic databases



Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (2/7)

Basic idea:

- FHCA search for the nearest neighbors in a small dataset which
includes only a representative for each class

- 'Then, it tries to classify the new item to the class of a
representative

- Upon failure to meet the set acceptance criteria, classification
proceeds by the conventional k-NN classifier

- Each representative is computed by calculating the average
value of the items that belong to each one class

- The main algorithm (FHCA) and the two variations (FHCA-V1 &
FHCA-V2) differ to each other on the set acceptance criteria that
they involve



Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (3/7)

Algorithm 1 Fast Hybrid Classification Algorithm

Input: Threshold, k

1: Scan the training data to compute the class centroids
2. for each unclassified item x do

3 Compute the distances between x and the class cen-
troids
4:  Find the nearest centroid A, and the second nearest

centroid B, using the Euclidian distance metric

3% if (distance(xr, B) - distance(x, A)) > Threshold
then

6: Classify o to the class of centroid A

7. else

8: Retrieve the & NNs from the initial training data

9: Find the major class (the most common one among
the & NNs. In case of a tie, it is the class of the
Nearest Neighbor)

10: Classify x to the major class

11 end if

12: end for




Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (4/7)

FHCA - Variation I

FHCA-V1 attempts to classity even more new incoming items
without falling back to the k-NN classifier

[t computes the region of influence of each one class

The class region of influence is the average distance of the
training set class items from the class centroid

It uses the distance difference
criterion and if it fails, it uses the

Region of Influence Criterion (RIC) ‘(

RIC: If x lies within the region of influenc ' Q
of one class, xis classified to this class PN



Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (5/7)

Algorithm 2 FHCA - Variation I

Input: Threshold, k

1: Scan the training data to compute the class centroids
2: Re-scan the training data to compute the region of in-

fluence of each one class centroid
3: for each unclassified item x do

4: Compute the distances between = and the class cen-
troids
5:  Find the nearest centroid A, and the second nearest

centroid B, using the Euclidian distance metric
6: if (distance(x, B) - distance(x, A)) > Threshold

then
i Classify x to the class of centroid A
8: else if x belongs to the region of influence of only one
class then
0: Classify x to this class
10: else
11 Retrieve the &k NNs from the initial training data
By Find the major class (the most common one among

the £k NNs. In case of a tie, it i1s the class of the
Nearest Neighbor)

13: Classify = to the major class

14: end if

15: end for




Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (6/7)

FHCA - Variation II
.
' ‘ "
e

6: if (distance(x, B) - distance(z, A)) > Threshold

then

i Classify x to the class of centroid A

S: else if x belongs to the region of influence of only one
class then

9: Classify = to this class

10: else if = belongs to the regions of influence of more
than one class then

11: Classify x to the class of nearest centroid whose

region of influence embraces x

12: else



Fast Hybrid classification based on Minimum
distance and the k-NN classifiers (7/7)

FHCA | FHCA | FHCA- | FHCA- | FHCA- | CNN ’

Dataset (T2 (T») VI(T)) | VI(Ts) V2 NN MDC E-INN
Letter Acc.: 95.24 90.78 92.06 87.00 71.46 91.9 58.08 95.68
recognition Cost: | 84.39 64.93 76.63 h5.15 27.33 16.78 0.17 75,000,000

Magic gamma  Acc.: 80.02 75.26 74.72 72.00 72.39 80.64 | 68.92 81.39
telescope Cost: | 44.11 23.48 28.98 9.64 10.34 40.66 0.01 70,230,000
Pendigits Ace.: 97.08 92.02 88.54 87.22 86.54 96.05 | 77.76 97.88

= Cost: | 62.74 30.89 32.2 20.40 19.92 4.16 .13 26,214,012
Landsat Ace.: 90.05 85.1 83.00 80.70 82.40 89.75 | 77.50 90.75
satelite Cost: 57.03 25.38 30.83 10.13 20.28 20.50 0.14 8,870,000
Shuttle Ace.: 99.82 08.19 95.15 95.12 81.57 99.85 | 79.57 99.88
Cost: 53.23 39.77 43.44 35.06 11.29 0.7 0.02 | 630,750,000
Letter Acc.: 91.06 86.06 89.14 84.36 62.72 90.32 | 53.98 91.82

recogn. (noisy) Cost: 83.05 64.69 78.47 61.71 21.47 78.71 0.17 75,000,000

Pendigits Aee: 96.17 91.71 93.31 88.65 78.7 96.20 | 75.90 97.00
(noisy) Cost: | 67.88 38.73 66.74 29.23 4.85 77.69 0.13 26,214,012

Landsat sat. Acc.: 87.80 85.05 86.55 82.30 h.05 87.6 71.40 88.30
(noisy) Cost: | 63.33 47.58 63.13 36.08 8.28 78.22 0.14 8,870,000




FHC: An adaptive fast hybrid method (1/9)

Motivation:

- Does the combination of the strategies of data abstraction and
CBMs lead to fast and accurate classification?

The contribution is the development of an adaptive, hybrid and
cluster-based method for speeding-up the k-NN classifier

- We develop a fast cluster-based preprocessing algorithm that
builds a two level data structure. The first level stores a number of
cluster means for each class. The second level stores the set of
items belonging to each cluster

- We develop efficient classifiers that access either the first or the
second level of the data structure and perform the classification



FHC: An adaptive fast hybrid method (2/9)

Two Level Data Structure Construction Algorithm (TLDSCA)
- For each class, it identifies a number of clusters

- First Level: A list of cluster centroids for all classes

- Second level: The “real” items of each cluster

Data Reduction Factor (DRF) determines the number of
representatives (or the TLDS length). For each class C, the algorithm
builds NC representatives

X

NC=lprr

1 X is the number of items
that belong to class C



FHC: An adaptive fast hybrid method (3/9)
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FHC: An adaptive fast hybrid method (4/9)

DRF = 10,
CIRCLE Items = 31, SQUARE Items = 27

31
NCCircle:[ﬁW:él'
NC EL =3

Square _[ m}



FHC: An adaptive fast hybrid method (5/9)




FHC: An adaptive fast hybrid method (6/9)

Hepresentative A Hepraseniative B Hepresentative & Hepresentative D Hepresentative E Hepresentative Hepresentative G
Vector of A Vector of B | Vector of C Vectorof D Vectorof F Vector of G
Class: Square Class: Square | Class: Sguare Class: Circle Class: Circle Class: Circle




FHC: An adaptive fast hybrid method (7/9)

FHC-I:

It accesses TLDS and make predictions

For each new item x, it scans the first level of TLDS and
retrieves the pk nearest representatives to x

If the npratio parameter is satisfied, they determine the class
where x belongs to

Otherwise, x is classified by searching for the k “real” nearest
neighbors within the clusters of the pk nearest representatives

The pk and npration parameters let the user to define the desirable
trade-oftf between accuracy and cost



FHC: An adaptive fast hybrid method (8/9)

npratio =1



FHC: An adaptive fast hybrid method (9/9)

FHC-II:

Motivation: in cases of non-uniform distributions, the
probability of performing a second level search depends on which
is the majority class of the first level search. Items belonging to
rare classes are always classified by a second level search

FHC-II attempts to better manage imbalanced datasets. It
considers the sizes of the classes and tries to reduce “costly”
second level searches.

FHC-II estimates npratio instead of using a pre-specified value.
The value of npratio is dynamically adjusted to be between a
user-defined range and depends on the majority class determined
by the first level search



FHC: Experimental study (1/8)

Dataset Size | Attributes | Classes

Letter Recognition (LR) 20000 16 26

Magic G. Telescope (MGT) | 19020 10 2

Pen-Digits (PD) 10992 16 10

Landsat Satellite (LS) 6435 36 6
Shuttle (SH) 58000 9

Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5




FHC: Experimental study (2/8)

LIR dataset
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FHC: Experimental study (3/8)

MGT dataset
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FHC: Experimental study (4/8)

PD dataset
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FHC: Experimental study (5/8)

LS dataset
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FHC: Experimental study (6/8)

SH dataset
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FHC: Experimental study (7/8)

TXR dataset
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FHC: Experimental study (8/8)

PH dataset
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Hybrid classification based on Homogeneous
Clusters (1/5)

Motivation:

- TLDSCA and FHC include three parameters (DRF, pk, npration).

The existence of these parameters may be characterized as weak
points

Contribution:

- The development of non-parametric method that combines the
idea of DRT with that of CBMs in a hybrid schema that follows
the procedure of forming homogeneous clusters of RHC

- The development of a CBM which is applied in the condensing
sets and is able to improve the performance of DRTs



Hybrid classification based on Homogeneous
Clusters (2/5)

Speed-up Data Structure Construction Algorithm (SUDCA):
- It is non-parametric, pre-processing algorithm

- It builds the Speed-Up Data Structure (SUDS)

- It is based on the procedure of forming homogeneous clusters of
RHC

- 'The length of SUDS is determined automatically without
parameters

SUDS data levels:
- First level: A list of prototypes built by RHC

- Second level: Each prototype indexes the “real” cluster items
which are stored in the second level



Hybrid classification based on Homogeneous
Clusters (3/5)

When a new item x must be classified:

HCAHC scans the first SUDS level and retrieves the pk nearest
prototypes

If all pk cluster prototypes vote a specific class, x is classified to
this class (first level search)

Otherwise, x is classified by searching the k “real” nearest items
within the subset formed by the union of the clusters of the pk
Prototypes (second level search)



Hybrid classification based on Homogeneous
Clusters (4/5)

HCAHC can not characterized as neither DRT nor CBM. It is a
hybrid method:

- First level search is an abstraction DRT (similar to RHC)

- Second level search is a CBM

HCAHC is a parametric algorithm. However pk can be determined by
the empirical rule:

Rk =|/|SUDS]|



Hybrid classification based on Homogeneous
Clusters (5/5)

SUDS classification method over condensing sets:

- We suggest the SUDS classification method to be applied on the
data stored in a condensing set

- A classifier that uses SUDS will be executed faster than the k-NN
classifier that searches for nearest neighbours in the condensing set.
The classifier that uses SUDS prunes distance computations,
without loss of accuracy

- Since SUDSCA is applied on a condensing set (i.e., a small dataset),
the preprocessing overhead introduced will be almost insignificant

- The proposed classifier (HCA) avoids classification through first
level search



Accuracy (%)

HCAHC: Experimental study (1/7)
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Accuracy (%)

HCAHC: Experimental study (2/7)

MGT dataset
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Accuracy (%)

HCAHC: Experimental study (3/7)

PD dataset
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Accuracy (%)

HCAHC: Experimental study (4/7)

LS dataset
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Accuracy (%)

HCAHC: Experimental study (5/7)

SH dataset
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Accuracy (%)

TXR dataset
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HCAHC: Experimental study (6/7)

5

6

7 8 g 10

Distance computations (Thousands)

Non-edited data

¢CNN wIB2 ¥YERSP3

99.0
98.5 -
980 g >
975

87.0

Accuracy (%)

865
96.0

8955
11 2 3 4

Distance computations (Thousands)

ARHC »HCM mHCAHC

L « =
> >
5 6 7

Edited data

A HCAHC-sqrt

8

9

10

11



Accuracy (%)

HCAHC: Experimental study (7/7)

PH dataset
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HCA: Experimental study (1/7)

LIR dataset
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HCA: Experimental study (2/7)

MGT dataset
82.0 82.0
A
81.0 A v s A
X v S £n
) = )
- g :
o 800 O 800
g < 0 2
2
79.0 79.0
5 10 15 20 25 0 5 10 15 20
Distance computations (Millions) Distance computations (Millions)
Non-edited data Edited data
HCNN ¥ RSP3 » RHC HIiB2

X CNN-HCA-SQRT & RSP3-HCA-SQRT « RHC-HCA-SQRT = IB2-HCA

25



PD dataset
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HCA: Experimental study (4/7)

LS dataset
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Accuracy (%)

HCA: Experimental study (5/7)

SH dataset
100.0 100.0
X H M  J & * v
> >
99.5 995
89.0 § 990
-8
[&]
98.5 £ 985
3!
£
98.0 <« »r 98.0
97.5 975
2 3 4 5 8 7 8 0 1 2 3 4 5 8
Distance computations (Millions) Distance computations (Millions)
Non-edited data Edited data
HMCNN ¥ RSP3 » RHC HIB2

X CNN-HCA-SQRT & RSP3-HCA-SQRT « RHC-HCA-SQRT = IB2-HCA



Accuracy (%)

HCA: Experimental study (6/7)

TXR dataset
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HCA: Experimental study (7/7)

PH dataset
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Future work

Development of non-parametric one-pass DRTs that take into
account the phenomenon of concept drift that may exist in data
streams

Enhancements and modifications on existing algorithms and
techniques so that they can cope with large and fast data streams
(with or without concept drift)

Parallel implementations of DRTs for fast construction of
condensing sets

Development of DRTs that can be applied in complex problems
such as multi-label classification

DRTs for imbalanced training data



Thank you

for your attention
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