
INTERNATIONAL HELLENIC UNIVERSITY | ORGANIZATION & ARCHITECTURE OF COMPUTER SYSTEMS | KRISTEL LAMAJ 




MULTI-DIMENSIONAL 
ARRAYS 



INTERNATIONAL HELLENIC UNIVERSITY | ORGANIZATION & ARCHITECTURE OF COMPUTER SYSTEMS | KRISTEL LAMAJ 

Arrays with two dimensions (i.e. subscripts) often represent tables of values 
of information arranged in rows and columns.


• The identity a particular table element, we must specify two subscripts. 

• By convention, the first identifies the element’s row and the second 
identifies the element’s column. 

• Arrays that require two subscripts to identify a particular element are 
called two-dimensional arrays or 2-D arrays. 

• Arrays with two or more dimensions are known as multidimensional arrays 
and can have more than two dimensions.  

The following figure illustrates a two-dimensional array, a. The array contains 
three rows and four columns, so it is a 3-by-4 array. In general, an array with 
m rows and n columns is called an m-by-n array. 

Every element in array a is identified by an element name of the form a[i][j]. 
a is the name of the array and i and j are the subscripts that uniquely identify 
each element in a. 




INTERNATIONAL HELLENIC UNIVERSITY | ORGANIZATION & ARCHITECTURE OF COMPUTER SYSTEMS | KRISTEL LAMAJ 

EXAMPLE

• Lines a-c declare thee arrays, each with two rows and three columns. 

• The declaration of array1 (line a) provides six initialisers in the two sub 
lists. The first sub list initialises row 0 of the array to the values 1, 2 and 3, 
the second sub list initialises row 1 of the array to the values 4, 5 and 6. 

• If the braces around each sub-list are removed from the array1 initialiser 
list, the compiler initialises the elements of row 0 followed by the elements 
of row 1, yielding the same result. 

• The declaration of array2 (line b) provides only five initialisers.  

• The initialisers are assigned to row 0, then row 1. Any elements that do not 
have an explicit initialiser are initialised to zero, so array2[1][2] is initialised 
to zero. 

• The declaration of array3 (line c) provides three initialisers in two sub lists. 

• The sub list for row 0 explicitly initialises the first two elements of row 0 to 
1 and 2, the third element is simplicity initialised to zero. 

• The program calls function printArray to output each array’s elements. 
Notice that the function prototype (line k) specify the parameter const int 
a[ ][columns]. 

• When a function receives a one-dimensional array as an argument, the 
array brackets are empty in the functions parameter. 

• The size of two-dimensional arrays; s first dimension (i.e., the number of 
rows) is not required either, but all the subsequent dimension sizes are 
required. The compiler uses these sizes to determine the locations in 
memory of elements in multidimensional arrays. 

•  All array elements are stored consecutively in memory, regardless of the 
number of dimensions. In a two-dimensional array, row 0 is stored in 
memory followed by row 1. 
 
 
 
 
 
 



INTERNATIONAL HELLENIC UNIVERSITY | ORGANIZATION & ARCHITECTURE OF COMPUTER SYSTEMS | KRISTEL LAMAJ 

 



RESULT 
Values in array1 by row are: 
1 2 3 
4 5 6 
Values in array2 by row are: 
1 2 3 
4 5 0 
Values in array3 by row are: 
1 2 0 
4 0 0 



INTERNATIONAL HELLENIC UNIVERSITY | ORGANIZATION & ARCHITECTURE OF COMPUTER SYSTEMS | KRISTEL LAMAJ 

 

NOTE - Each row is a one-dimensional array. To locate an element in a 
particular row, the function must know exactly how many elements are in 
each row so it can skip the proper number of memory locations when 
accessing the array. Thus, when accessing a[1][2], the function knows to skip 
row 0’s three elements in memory to get to row 1. Then, the function 
accesses element 2 of that row. Many common array manipulations use FOR 
statements.  

EXAMPLE


The following FOR statement sets all the elements in row 2 of array a.

 
for ( int column = 0; column < 4; ++column ) 
	 a[ 2 ][ column ] = 0; 

The FOR statement varies only the second subscript (i.e., the column 
subscript). The preceding FOR statement is equivalent to the following 
assignment statements -  
 
a[ 2 ][ 0 ] = 0; 
a[ 2 ][ 1 ] = 0; 
a[ 2 ][ 2 ] = 0; 
a[ 2 ][ 3 ] = 0; 

The following Nested FOR statement determines the total of all the elements 
in array a -  
 
total = 0; 
for ( int row = 0; row < 3; ++row ) 
for ( int column = 0; column < 4; ++column ) 
total += a[ row ][ column ];


