

OPERATORS

- An operator is a symbol that tells the compiler to perform specific mathematical or logical functions
- Types of operators:
- Arithmetic Operators
- Comparison Operators
- Boolean Operators
- Bitwise Operators
- Compound Operators

Arithmetic Operators

\(\left.\begin{array}{|c|c|c|c|}\hline OPERATOR NAME \& OPERATOR SYMBOL \& DESCRIPTION \& EXAMPLE

\hline Assignment operator \& \& \& \begin{array}{c}Stores the value of the

right of the equal sing in

the variable to the left of

the equal sign\end{array}\end{array}\right]\)| A = B |
| :---: |
| Addition |
| Subtraction |

Comparison Operator

Assume variable $A=10$ \& variable $B=20$
OPERATOR NAME OPERATOR SYMBOL DESCRIPTION EXAMPLE

Equal to	==	Checks if the value of two operands is equal or not. If yes then, condition becomes true.	$(A==B)$ iis false
Not equal to	!=	Checks if the value of two operands is equal or not, if values are not equal then condition becomes true	($A!=B$) is true
Less than	<	Checks if the value of the left operand is less than the value on the right operand. If yes then condition becomes true.	$(\mathrm{A}<\mathrm{B})$ is true

Greater than	>	Checks if the value of the left operand is greater than the value on the right operand. If yes then condition becomes true.	($\mathrm{A}>\mathrm{B}$) is false
Less than or equal to	$=$	Checks if the value of the left operand is less than or equal the value on the right operand. If yes then condition becomes true.	($\mathrm{A}<=\mathrm{B}$) is true
Greater than or equal to	>=	Checks if the value of the left operand is greater than or equal the value on the right operand. If yes then condition becomes true.	($\mathrm{A}>=\mathrm{B}$) is false

Boolean Operators
Assume variable $A=10 \&$ variable $B=20$
OPERATOR NAME OPERATOR SYMBOL DESCRIPTION EXAMPLE

And	\&\&	Called logical AND operator, if both the operands are non-zero then the condition becomes true	$(A \& \& B)$ is true		
Or	\|		Called Logical OR operator. If any of the two operands is nonzero then the condition becomes true	$(A \\| B)$ is true	
Not	!	Called logical NOT operator. Use to reverses the logical state of its operand. If condition is true then logical NOT operator will make false	! (A \& \& B) is false		

Bitwise Operators
Assume variable $A=60$ and variable $B=13$

OPERATOR NAME	OPERATOR SYMBOL	DESCRIPTION	EXAMPLE
And	\&	Binary AND operator copies a bit to the result if it exists in both operands	(A \& B) will give 12, with is 00001100
Or	\|	Binary OR operator copies a bit if it exists in either operand	($A \mid B$) will give 61 which is 00111101
xor	\wedge	Binary XOR operator copies the bit if it is set in one operand but not both	($A \wedge B$) will give 49 which is 00110001
Not	\sim	Binary ones complement operator is unary and has the effect of 'flipping' bits	($\sim A$) will give -60 which is 11000011
Shift left	<<	Binary Left Shift operator. The left operands value is moved left by the number of bits specified by the right operand.	A $\ll 2$ will give 240 which is 11110000
Shift right	>>	Binary Left Shift operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 will give 15 which is 00001111

Compound Operators

Assume variable $A=10$ and variable $B=20$

OPERATOR NAME	OPERATOR SYMBOL	DESCRIPTION	EXAMPLE
Increment	++	Increment operator, increases integers value by one	A++
Decrement	--	Decrement operator, decreases integers value by one	A- -
Compound addition	+=	Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.	A $+=B$
Compound Subtraction	-=	Subtract AND assignment operator. It subtracts the right operand from the left operand and assign the result to the left operand.	A -= B
Compound Multiplication	*=	Multiply AND assignment operator. It multiplies the right operand with the left operand and assign the result to the left operand.	$A^{*}=B$
Compound Division	/=	Divide AND assignment operator. It divides the left operand with the right operand and assign the result to the left operand.	$\mathrm{A} /=\mathrm{B}$
Compound Modulo	\%=	Modulus AND assignment operator. It takes modulus using two operands and aligns the result to left operand	A \% = B
Compound Bitwise OR	\|=	Bitwise inclusive OR and assignment operator	A $=\mathrm{B}$
Compound Bitwise AND	\& $=$	Bitwise AND assignment operator	A \& $=B$

