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Abstract Content distribution networks (CDNs) improve scalability and reliability,
by replicating content to the “edge” of the Internet. Apart from the pure networking
issues of the CDNs relevant to the establishment of the infrastructure, some very
crucial data management issues must be resolved to exploit the full potential of
CDNs to reduce the “last mile” latencies. A very important issue is the selection
of the content to be prefetched to the CDN servers. All the approaches developed
so far, assume the existence of adequate content popularity statistics to drive the
prefetch decisions. Such information though, is not always available, or it is extremely
volatile, turning such methods problematic. To address this issue, we develop self-
adaptive techniques to select the outsourced content in a CDN infrastructure,
which requires no apriori knowledge of request statistics. We identify clusters of
“correlated” Web pages in a site, called Web site communities, and make these
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communities the basic outsourcing unit. Through a detailed simulation environment,
using both real and synthetic data, we show that the proposed techniques are very
robust and effective in reducing the user-perceived latency, performing very close to
an unfeasible, off-line policy, which has full knowledge of the content popularity.

Keywords data dissemination techniques on the web ·
content distribution networks · web communities · web prefetching ·
internet and web-based · web data mining

1 Introduction

The Web has evolved rapidly from a simple information-sharing mechanism offering
only static text and images to a rich assortment of dynamic and interactive services,
such as video/audio conferencing, e-commerce, and distance learning. However, its
explosive growth has imposed a heavy demand on networking resources and Web
servers. Users experience long and unpredictable delays when retrieving Web pages
from remote sites. The obvious solution to improve the quality of Web services
would be the increase of the bandwidth, but such a choice involves increasing the
economic cost. Besides, the higher bandwidth would solve only temporarily the
problems since it would ease the users to create more and more resource-hungry
applications, bunching again the network.

A traditional method to cure this situation is caching [21, 42, 46]. Although,
caching offers several benefits, like reduced network traffic, shorter response times,
it has drawbacks, e.g., small hit rates [25] and compulsory misses. To compensate
for such problems, traditional caching is coupled with prefetching, which aims at
predicting future requests for Web objects and bringing those objects into the cache
in the background, before an explicit request is made for them. The most common
prefetching practice is to make predictions [22] based on the recent history of
requests of individual clients, which is called short-term prefetching [32]. This pull-
based model of content access is problematic, because it does not improve availability
during “flash crowds”, and can not resolve the performance problems related to Web
server processing and Internet delays.

Content distribution networks (CDNs) promise to resolve such problems, by
moving the content to the “edge” of the Internet, closer to the end-user. With the
“key” content outsourced, the load on the origin server is reduced, the connection
from a local content delivery server is shorter than between the origin Web server
and the user, thus reducing latency, and since many users share the CDN servers,
this service greatly increases the hit ratio. In this paper, we propose a novel prefetcing
scheme for CDNs by developing an effective self-adaptive outsourcing policy.

The rest of this paper is organized as follows: Section 2 provides background
information for CDNs. Section 3 outlines the motivation and contribution of this
work. Section 4 provides a formal definition of the Web site communities and
the prefetching problem. Section 5 describes the algorithm for the identification
of the communities. In Sects. 6 and 7, we describe the simulation testbed and show
the performance evaluation of the proposed prefetching scheme and finally, Sect. 8
concludes the paper.
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2 Content outsourcing policies in CDNs

A CDN [37] is a network of cache servers, called surrogate servers, owned by the
same Internet service provider that delivers content to users on behalf of content
providers. More specifically, CDNs maintain multiple points of presence with clusters
of surrogate servers which store copies of identical content, such that users’ requests
are satisfied by the most appropriate site (Figure 1). Thus, the client-server commu-
nication is replaced by two communication flows: one between the client and the
surrogate server, and another between the surrogate server and the origin server,
resulting into reduced congestion, increased availability and more effective content
distribution. Typically, a CDN consists of:

1. a set of surrogate servers (distributed around the world), which cache the origin
servers’ content,

2. routers and network elements which deliver content requests to the optimal
location and the optimal surrogate server,

3. an accounting mechanism which provides logs and information to the origin
servers.

Apart from the networking issues involved in the establishment of the CDN’s
infrastructure, like client request redirection [39], logical overlay topologies for large
scale distribution [44], storage capacity allocation [28], server placement strategies to
improve average response time or bandwidth consumption [40] and empirical CDN
performance measurement studies [24], in order to exploit the full potential of CDNs,
crucial data management issues must be addressed, as well. Among them, the content
outsourcing policy to follow lies in their backbone. Up to now, four distinct content
outsourcing policies appeared in the literature (Figure 2):

1. Uncooperative pull-based: clients’ requests are directed to their “closest” sur-
rogate server (in terms of geographic proximity, or load balancing, etc.), which
acts as a plain cache. The drawbacks of this practice is that CDNs do not always

Figure 1 A typical CDN.
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Figure 2 Content outsourcing
policies.
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choose the optimal server from which to serve the content [47] and they also
incur excessive replication redundancy, that is, an object is replicated many
times in different surrogate serves. However, many popular CDN’s providers
use uncooperative pulling [e.g., Akamai (http://www.akamai.com), LimeLight
Network (http://www.limelightnetworks.com/)].

2. Cooperative pull-based: clients’ requests are directed (through DNS redirection)
to their closest surrogate server. The key in the cooperative pull-based CDNs
[e.g., Coral (http://www.coralcdn.org/overview/)] is that the surrogate servers
are cooperating with each other in case of cache misses. Specifically, using
a distributed index, the surrogate servers find nearby copies of the requested
objects, and store them in their caches [1]. The cooperative pull-based schemes
are reactive wherein a data object is cached only when the client requests it,
and consequently, these schemes impose a large communication overhead (in
terms of the number of messages exchanged) when the number of clients is large.
Moreover, this mechanism does not offer high fidelity when the content changes
rapidly or when the coherency requirements are stringent.

3. Uncooperative push-based: the content is pushed (proactively) from the origin
Web server to the surrogate servers. The requests can be satisfied either at a local
surrogate server or at the origin Web server, but not at a nearby surrogate server
due to the lack of informed request redirection. As a result, this scheme does not
have much flexibility in adjusting replication and management cost.

4. Cooperative push-based: the content is pushed (proactively) from the origin Web
server to the surrogate servers [40, 48]. Upon a request, if the surrogate server
has an object replica, it serves the request locally, otherwise, it forwards the
request to the closest server that has the object replica and relays the response
to the client. In case that the requested object has not been replicated by some
surrogate server (the requested object has not been outsourced), the request is
served by the origin server. This replication policy is termed long-term prefetch-
ing [6, 12, 20, 48–50] and works by identifying collections of “valuable” objects
to replicate. Although this scheme requires cooperation among the surrogate
servers (incurring some communication and management cost to implement

http://www.akamai.com
http://www.limelightnetworks.com/
http://www.coralcdn.org/overview/
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Table 1 Main characteristics of content outsourcing policies.

Content outsourcing policies Replication Communication Update cost Temporal
redundancy cost coherency

Uncooperative pull High High High Low
Cooperative pull Low High Medium Medium
Uncooperative push High Low Medium Medium
Cooperative push Low Medium Low High

the cooperation), this cost is amortized by the facts that the surrogate servers
share efficiently the bandwidth among them and also reduce the replication
redundancy, reducing in turn the cache consistency maintenance costs.

In contrast to the pull-based approaches (uncooperative and cooperative) which
wait for the clients to request information, the push-based approaches let the content
providers to proactively push the information into caches close to the user, expecting
a further reduction to the access latency. Indeed, the authors in Chen et al. [6]
concluded that the cooperative-push based policy provides the best overall results,
when compared to the other approaches. Table 1 summarizes the pros and cons of
the existing policies.

Motivated by the aforementioned conclusions, this paper adopts the cooperative-
push based policy aiming to optimize it. For a content provider who wishes to out-
source (part of) its content, the most important data management problems are the
following:

(a) Long-term prefetching problem: Automatically select which objects to
outsource.

(b) Content placement problem: Select which surrogates will replicate which
objects.

(c) Cache coherency problem: Maintain the outsourced objects consistent (fresh).

In this paper, we deal with the problem of long-term prefetching for cooperative
push-based content distribution. We do not examine the content placement problem
for which adequate solutions already exist [6, 20, 28, 36, 38], neither examine
coherency maintenance strategies, assuming the adoption of a high-performance
algorithm for replica maintenance [34].

3 Motivation and paper’s contributions

Straightforward approaches for performing content selection consist of the case
where the site administrators decide about which content will be outsourced, and
the case where (almost) the whole owner’s site is replicated. Apparently, the first
approach is out of question, since it is completely unscalable. The latter may seem
feasible, since the technological advances in storage media and networking support
have greatly improved. Though the very recent progresses in gaming and entertain-
ment market proved that this is almost impossible to achieve. For instance, after
the recent agreement between Akamai Japan and Sony Computer Entertainment
(SCE), under which the first company is adopted as the content delivery platform by
the PLAYSTATION@Network (an online service for PLAYSTATION 3), we can
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deduce, since these are proprietary information, the huge storage requirements of
the surrogate servers. Moreover, the evolution towards completely personalized TV,
e.g., the GoTV (http://www.gotvnetworks.com/) reveal that the full content of the
origin servers can not be completely outsourced as a whole.

Apart from the aforementioned naive and unscalable approaches for content
selection, there exist some proposals for “automatically” selecting this content [6,
12, 20, 29, 48–50]. All of them assume knowledge of the popularity profile of each
object, performing replication on a per Website basis [20, 48–50] (replicating all “hot”
objects of the site as one unit), or performing replication on a per cluster-of-objects
basis [6, 12, 29] (replicating “hot” content in units of groups of individual objects).
Works by Chen et al. [6], Fujita et al. [12], Kangasharju et al. [20], Venkataramani
et al. [48], and Wu and Kshemkalyani [49, 50] first perform a ranking of the
objects based on their popularity, and then select an administratively tuned per-
centage of them to replicate to surrogate servers. Works by Kangasharju et al. [20],
Venkataramani et al. [48], and Wu and Kshemkalyani [49, 50] replicate these objects
as a single group, whereas Chen et al. [6] and Fujita et al. [12] cluster the objects
into groups, based on time of reference, or number of references, etc, and perform
replication in units of clusters. The clustering procedure is executed either by fixing
the number of clusters or by fixing the maximum cluster diameter, thus using
administratively tuned parameters, since neither the number or the diameter of
the clusters can ever be known. Authors in Chen et al. [6] showed that long-term
prefetching on a per cluster-of-objects basis is superior than on a per Web-site basis.

The use of popularity statistics has several drawbacks. Firstly, it requires quite a
long time to collect reliable request statistics for each object. Such a long interval
though may not be available, when a new site is published to the Internet and should
be protected from “flash crowds” [19]. Moreover, the popularity of each object varies
considerably [3, 6][Sect. IV]; for the WorldCup’98 trace, only 40% of the “popular”
objects of the one day remain “popular” and the next day. In addition, the use of
administratively tuned parameters to select the hot objects, or decide the number of
clusters causes additional headaches, since there is no apriori knowledge about how
to set these parameters. The authors in Chen et al. [6] and Fujita et al. [12], realizing
the limitations of such solutions proposed the creation of clusters based on some ad
hoc criteria, i.e., the directory structure of the Web objects. In addition, the greedy
approaches [20] are not feasible to implement on real applications, due to their high
complexity.1

Therefore, we need to implant intelligence into the cluster formation process. To
reach this target we examined some qualitative characteristics of Web site creation
and Web surfing processes. It is self-evident, that Web site creators (humans or
application programs) tend to organize their sites into collections of interrelated
objects, which usually deal with a (more or less) coherent topic and have dense
linkage. Additionally, user groups access these collections according to their interests
and navigation alternatives of the site. When a user enters such a collection, s/he is
more likely to navigate within it rather than to jump to another one, since (a) his

1Because of the huge memory requirements, authors in Chen et al. [6] reported that they could not
run all the experiments for the greedy heuristic policies.

http://www.gotvnetworks.com/
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interests lie within the collection, and (b) the dense linkage of the collection’s pages
imply a higher probability of selecting a link which will direct him to a page of the
collection.

The collection of Web objects (pages) within a Web site, which refer to a
coherent topic and have relatively dense linkage among them, is called Web site
community. These communities are perfect candidate groups of objects to be long-
term prefetched, as long as we can identify them by exploiting only the hyperlink
information, and not using parameters, regarding their number, their diameter, or
their topic (keywords).

Another motivation of this work is to study the content outsourcing problem
under an analytic CDN simulation model which considers both the network traffic
and the server load. Until now, the most noteworthy works [6, 20] do not take into
account several critical factors, such as the bottlenecks that are likely to occur in
the network, the number of sessions that can serve each network element (e.g.,
router, surrogate server) etc. Thus, the results presented may be misleading (they
measure the number of traversed nodes (hops) without considering the TCP/IP
network infrastructure). Therefore, the motivation for us is to develop a flexible
simulation model that simulates in great detail the TCP/IP protocol as well as
the main characteristics of a cooperative push-based CDN infrastructure model.
Specifically, the main benefit of a detailed CDN simulation model is that it gives
a (closely) realistic view to the CDNs’ developers about which will be the profits for
both the CDNs’ providers and CDNs’ customers if the proposed approach adapts to
a real CDN’s provider (e.g., Akamai).

3.1 Paper’s contributions

This paper studies the problem of long term prefetching for CDNs on a per cluster-
of-objects basis. The main contributions of this paper can be summarized as follows:

1. We provide evidence that Web communities exist within Web sites, revealing
thus a “fractal” nature of the communities: communities at the small scale
(logical documents [7, 30, 45]), communities at the medium scale (site com-
munities, introduced in this paper), and communities at the giant scale (hubs-
authorities [9, 14, 23]).

2. We provide a new, quantitative definition of the communities, different from
the existing ones, which allows for overlapping communities, thus being more
appropriate for our target application.

3. We provide a novel, self-tuning method for detecting such communities, which
exploits only the hypertext links between pages, making no use of keywords to
detect topics, and no ad hoc assumptions about the number or the nature of the
communities. The proposed method is based on the plain intuition that a link
between pages implies a correlation of the pages.

4. We develop a scalable and robust simulation environment, the CDNsim tool
(found at http://oswinds.csd.auth.gr/∼cdnsim/), to test analytically the efficiency
of the proposed C3i-PR communities-based long-term prefetching scheme. Using
real and synthetic test data, we show the efficiency of the proposed method,
which can reap performance benefits almost equal to an analogous C3i-Hot off-
line policy, which has a priori knowledge of the object popularity statistics.

http://oswinds.csd.auth.gr/$sim $cdnsim/
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4 Medium scale communities and long-term prefetching

This section provides a formal definition of the Web site communities and of the long-
term prefetching problem. In the sequel, the terms “communities” and “clusters” are
used interchangeably. Table 2 describes the variables used throughout the paper.

4.1 Earlier definitions of communities

The qualitative definition of a community as a part of a graph where internal
connections are denser than external ones has already been introduced in the
literature. For instance, in Greco et al. [14], Haveliwala [16], Kleinberg [23], and Page
et al. [35], a Web community spans several sites, thus it is an inter-site community,
and it is tightly connected to a specific topic, determined by a set of keywords.
Analogous inter-site communities have been described in Flake et al. [9, 10], Kumar
et al. [27], and Masada [31] using pure graph-theoretic techniques, like cliques [27],
max-flow clusterings [9, 10, 18] or connected components [13, 31]. All these are inter-
site communities and require heavy parameterization to work.

At the other extreme, intra-site communities have been introduced as compound
documents [7] and logical information units [30, 45] at a much smaller scale, being
comprised by a handful of Web objects of a single site. A compound document is a
logical document authored by (usually) one author presenting a extremely coherent
body of material on a single topic, which is split across multiple nodes (URLs).
Similarly, a logical information unit is not a single Web page, but it is a connected
subgraph corresponding to one logical document, organized into a set of pages
connected via links provided by the page author as “standard navigation routes”.

Table 2 Notation for variables.

Variable Description

G(V′, E′) Web graph where V′ is the number of vertices and E′ is the number of edges
V Subgraph of the graph G
Mi, j Adjacency matrix of the graph G
di Graph’s degree of node i
din

i (V) Number of edges connecting node i to other nodes belonging to V
dout

i (V) Number of connections towards nodes in the rest of the network
X Number of nodes in the internetwork topology
N Number of surrogate servers
C(N) Available storage capacity of N surrogate servers
S Total size of all replicated objects
U Number of users
O Number of unique objects of a Web site
Ou Number of objects requested by user u
DU,N Distance between the i-th user (i ∈ U) and node j ( j ∈ N)
No Set of locations where object o has been replicated
lo( j) Location of object o at the j-th surrogate server
C Set of the Web communities where C = {C1, C2, ...Cn} ⊂ G
c(x) Cohesion factor of community x
F(G, V) Average cohesion factor c(x) for all the communities of the Web graph G
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Figure 3 Sample communities where definition in Flake et al. [9] is not appropriate for long-term
prefetching.

Apparently, compound documents and logical information units are not appro-
priate for the prefetching in CDNs. The notions of inter-communities could be
used in our target application, but they present some important weaknesses. With
clique-based communities, we could end up with a huge number of very small
communities, since it is quite unprobable for a Web site to be comprised by large
cliques; as a matter of fact we hardly expect to find any large cliques. With connected-
component communities, we could end up with a single community comprised by the
entire Web site. Max-flow communities seem more appropriate, but they suffer from
their strict definition of the community, i.e., (a) they discover only non-overlapping
communities, and (b) may leave some nodes outside of every community. For
instance, according to Flake et al. [9] and Ino et al. [18], node 1 in the left part of
Figure 3 will not be assigned to any community; similarly no community will be
discovered for the graph shown in the right part of the figure, although at a first
glance, we could recognize four communities based on our human perception, i.e.,
the four triangles; a careful look would puzzle us whether the four nodes at the
corners of the square really belong to any community. (The meaning of the dashed
and dotted lines will be explained later.)

In summary, at the giant scale, we have inter-site communities, at the small and
“tiny” scale we have logical-document communities, but neither of them can be used
gracefully to perform long-term prefetching in CDNs. Thus, we investigated the
situation at the medium scale, i.e., the scale of a single Web site. We argue that
communities do exist at this scale and they can be exploited in order to perform
efficient long term prefetching in CDNs.

To support our claim we examined several Web sites with a crawl available on
the Web. As an intuitive step, we confirmed the existence of such communities
using graph visualization with Pajek.2 As a sample, we present the drawing of
http://www.hollins.edu (Figure 4), whose January 2004 crawl is publicly available.3

We can easily see the co-existence of compound documents (at the lower right

2http://vlado.fmf.uni-lj.si/pub/networks/pajek/
3http://www.limfinity.com/ir/data/hollins.dat.gz

http://www.hollins.edu
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.limfinity.com/ir/data/hollins.dat.gz
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Figure 4 Web site communities at http://www.hollins.edu.

corner), with compact node clusters (at the upper center), and less apparent clusters
(at the upper right of the image).

Therefore, for our target application we need a radically different formulation
for the concept of a community, which: (a) is quantitative, (b) allows for overlapping
communities, (c) is based only on the hyperlink information, assuming that two pages
are “similar” or “correlated” if there exists a link between them and uncorrelated if
such a link does not exist, (d) whose topic is much more generic than the logical
document’s topic, (e) does not make use of artificial “weights” on the edges of the
Web site graph, and (f) does not make use of the direction of links in the Web site
graph (because of the existence of the “back button”). Such a definition is described
in the next subsection.

4.2 The proposed medium scale communities

To provide quantitative community definitions we consider di, the degree of a generic
node i of the considered graph G. This quantity, in terms of the adjacency matrix Mi, j

of the graph, is di = ∑
j Mi, j. Considering a subgraph V ⊂ G, to which node i belongs,

we can divide the total degree d in two portions: di(V) = din
i (V) + dout

i (V). The first
term in the right-hand side of the equation is the number of edges connecting node i
to other nodes belonging to V, i.e., din

i (V) = ∑
j∈V Mi, j. The second term in the right-

hand side of the equation is the number of connections toward nodes in the rest of
the graph, i.e., dout

i (V) = ∑
j/∈V Mi, j. We define our communities as follows:

Definition 1 (Web site community) A subgraph V of a Web site graph G constitutes
a Web site community, if

∑

i∈V

din
i (V) >

∑

i∈V

dout
i (V), or (1)

∑
i∈V din

i (V)
∑

i∈V dout
i (V)

> 1, (2)

http://www.hollins.edu
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i.e., our sense of community implies that the sum of all degrees within the community
V is larger than the sum of all degrees toward the rest of the graph G.

Large values of this fraction imply stronger communities. The above definition
is an alternative concept for the original modularity measure of a network, which
was introduced in Newman and Girvan [33] and it is roughly calculated as the
number of edges falling within a community minus the expected number of edges
between the nodes of the community in a completely random graph. Our concept
of modularity departs from this probabilistic concept and it is able to characterize
the most modular networks (e.g., collections of cliques with only minimal number
of edges between them just to ensure connectivity), and non-clustered networks
(e.g., random networks).

With the notation of Definition 1, Flake’s community definition [9, 10] implies that
din

i (V) > dout
i (V), ∀i ∈ V. Obviously, every community according to this definition

is also a community according to our sense, but the converse is not always true.
Thus, our definition overcomes the limitation explained in Figure 3 by implying
more generic communities. The essence of definition 1 is that we are interested
in “neighborhoods”, i.e., paying attention to the communities as a whole, trying
to increase their strength, rather than focusing on each individual member of the
community, like the definition in Flake et al. [9], which is an extremely local
consideration.

The astute reader will recognize that this definition does not lead to unique
communities, since by adding or deleting “selected” nodes the property may still
hold. For instance, looking at the right part of Figure 3, we see that the property is
satisfied if: (a) we consider as a community each of the four triangles, or (b) if we
consider as a community each of the two right triangles and the nodes contained
inside the dashed line, or finally, (c) if we consider as a community the bottom right
triangle and as a second community the nodes enclosed by the dotted line. None of
these groupings is counterintuitive; on the contrary, as we move from case a to case
c, the clustering justifies the belonging of the boundary nodes (nodes at the corners
of the square) to their cluster.

Given the aforementioned definition, we can describe our communities identifica-
tion (clustering) problem as follows:

Definition 2 (Web site communities discovery problem) Given a graph with ν

vertices, find the (maximum number of) possibly overlapping groups of vertices
(i.e., a non-crisp clustering), such that the number of edges within clusters is maxi-
mized and the number of edges between clusters is minimized, such that Definition 1
holds for each group.

The nice feature of this formulation is that we do not need to specify the number
of clusters as a predetermined parameter, as in k-median or min-sum or min-max
clustering. Instead, the optimal number of clusters could be any value between 1 and
n, depending on the node connections. Moreover, it provides the freedom to stop
the community discovery process in very early stages as long as definition 1 holds for
each discovered community, without the need to discover the best possible grouping.

This formulation bears some similarity with the correlation clustering problem
defined in Bansal et al. [2], but, in their computation of agreements (disagreements),
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they also take into account any non-existing connections between vertices of the
same cluster. Such a consideration is not compatible with definition 1 and also
creates problems into the consideration of compound documents (in general, trees)
as communities or members of them.

4.3 The cooperative push-based CDN infrastructure

In this subsection, we formally define the long-term prefetching problem, stating
explicitly any assumptions made about the CDN environment. We consider a
cooperative push-based CDN infrastructure, where each surrogate server knows
what content is cached to all the other surrogate servers. This could be easily
achieved with a summary cache architecture [8]. Furthermore, similar to previous
works [6, 12, 20, 48–50], we consider that the Web objects fetched upon a cache
miss are not inserted into the surrogate’s cache, but simply forwarded to the
requesting client.

Regarding the networking issues of the CDN, we assume knowledge of the
following quantities: (a) network access costs, (b) placement of surrogate servers,
and (c) storage capacity of the surrogate servers.

The input to our problem consists of the following information: (a) a network
topology X consisting of |X| network nodes, (b) a set N of |N| surrogate servers,
whose locations are appropriately [40] selected upon the network topology, (c) a
set O of |O| unique objects of the Web site which has an outsourcing contract with
the CDN provider, where No denotes the set of locations where object o has been
replicated and lo( j) denotes that the object o is located at the j-th surrogate; (d) a
set U of |U | users, where Ou is the set of objects requested by client u; (e) a distance
function DU,N : U × N −→ R+ associated with the location of the i-th user (i ∈ U)
and j-th node ( j ∈ N). This distance captures the cost when user i retrieves an object
from surrogate j. We can describe the long-term prefetching problem for CDNs as
follows:

Definition 3 (Long-Term Prefetching Problem) The long-term prefetching problem
for CDNs is to select the content to be outsourced such that it minimizes:

repli_cost =
∑

i∈U

⎛

⎝
∑

o∈Oi

(

min
j∈No

Di,lo( j)

)
⎞

⎠ (3)

subject to the constraint that the total replication cost is bounded by OS ≤ C(N),
where OS is the total size of all the replicated objects to surrogate servers, and C(N)

is the cache capacity of the surrogate servers.

A naive solution to this problem is to replicate all the objects of the Web site
(full-mirroring) to all the surrogate servers. Such a solution is not feasible/practical
because, although disk prices are continuously dropping, the sizes of Web objects
increase as well (e.g., VOD, audio). Moreover, the problem of updating such a huge
collection of Web objects is unmanageable. Therefore, we must resort to a selective
policy, which will outsource only groups of “valuable” objects, and the proposal is to
form groups of objects in terms of Web site communities. The next section develops
such an algorithm.
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5 Web communities identification and management

From the discussion in Subsection 4.2 we deduced that we need an efficient non-
crisp correlation clustering algorithm in order to identify the communities. In the
following paragraphs, we develop a novel, simple, heuristic algorithm, which, given a
Web site graph, finds clusters of correlation-connected Web pages (Web site commu-
nities). We name this algorithm correlation clustering communities identification, in
short, C3i.

5.1 The C3i algorithm

Let G be our Web-graph and C = {C1, C2, ....Cn} the set of clusters such that C1 ∪
C2 ∪ ..... ∪ Cn ⊆ G. Also, may exist i and j (i �= j) such that Ci ∩ C j �= ∅. Following
Definition 1, we define a measure of strength of a community:

Definition 4 (Cohesion Factor) Let x be a cluster; the cohesion factor c(x) of x is
equal to:

c(x) = number of “external” links
number of “internal” links

(4)

Our target is to minimize this factor for all the clusters at the maximum number
of clusters; therefore we must minimize the function F(G, C), defined as:

F(G, C) = 1
|C|

∑

∀x∈C

c(x) (5)

where G the graph, C is the set of clusters and |C| is the cardinality of C. It follows
easily that finding the optimal correlated clusters is unfeasible, since this clustering
problem is NP-hard (similar to Bansal et al. [2]). To attack the problem, we exploit
some form of sampling. The algorithm we develop consists of two phases. In the
first phase, the “kernel” nodes of clusters – the nodes around which we will build
the clusters – are selected and a set of clusters is produced. Each cluster consists of
only one kernel node. In the second phase, we expand each cluster until all nodes
belong to some cluster. In the subsequent paragraphs, we explain our algorithm in
detail. We also provide a pseudo-code in Figure 5, illustrating only the important
parts of C3i.

Phase 1 (Selection of kernel nodes) The first step in our communities detection
algorithm is the selection of the kernel nodes. There are two issues involved into this
decision. The first decision regards the number of such nodes and the second decision
regards their identity. Suppose we knew in advance the “best” communities of our
input graph, i.e., the communities that solve the problem of Definition 4. Clearly,
the number of kernel nodes should be equal to the number of “best” communities or
large enough, so as successive cluster mergings to finally give the “best” communities.
A naive approach could be to select all the nodes of the graph as kernel nodes,
and start the clustering. Although, this approach seems appealing from a clustering
quality perspective, the involved time overhead is prohibitive. Therefore, we have to
select a portion of the total graph nodes, close to an estimate of the expected number
of communities. Although there do not exist accurate estimates for this number,
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Algorithm 1 The C3i algorithm
Input: : Web site graph
1:  K=0;
2: repeat

Phase I: Selection of Kernel Nodes
3: select kernel nodes(G);
4: make each kernel node a cluster ;
5: ;

Phase II: The Clustering Procedure
6: Cohesion clustering(K,G);
7: until no growth for K
8: return K;

Correlation clustering(K,G)
Input: K: set of clusters
Input: : Web site graph
Step 1:
1: repeat
2: for each cluster c in K do
3: Check 1 node expand(c);
4: end for
5: find unions(K);
6: until no change in K;

Step 2:
7: repeat
8: for each cluster c in K do
9: Check 1 node remove(c);

10: end for
11: until no change in K;
Step 3:
12: repeat
13: for each cluster c in K do
14: Check x nodes expand(c,t);
15: end for
16: find unions(K);
17: until no change in K;

Check 1 node expand(c)
Input: c: cluster
1: for each node n connected to c do
2: if then
3:
4: end if
5: end for

Check 1 node remove(c)
Input: c: cluster
1: for each node n of c do
2: if then
3:
4: end if
5: end for

Check x nodes expand(c,t)
Input: c: cluster; t: integer
1: for each subgraph connected to

c) do
2: if then
3:
4: end if
5: end for

Figure 5 Justification for step 2 of C3i.

we can use the approximation reported in Guimera et al. [15], and select n = √|G|
kernel nodes.

The decision about which graph nodes will be selected as kernel nodes is easier,
because we know that these nodes are “central” (visible) to their clusters. We can
devise several methods to select “central” nodes. The naive and low complexity
method is to select the nodes completely at random; this decision may prove useful in
random graphs with “average” connectivity and equi-sized communities. A second
method is to consider the nodes with the highest degree. A third alternative is to get
the nodes with the highest PageRank value. Finally, we could select nodes with the
highest HITS value.
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Figure 6 The C3i
communities discovery
algorithm.
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Each of these methods has the obvious virtues, but some drawbacks as well. The
first method will not work well in scale free graphs or with graphs with non equi-sized
communities. The second method misses weakly connected clusters and clusters that
do not actually have a center. The third method misses also important nodes, because
PageRank is very sensitive to circles. So, if some nodes belong to big circles, then all
of them get a high rank. As a result, we will select a lot of nodes which belong to the
same cluster. In addition, PageRank misses the hubs (nodes with large out-degree),
which may also be kernels of clusters. Finally, the last method misses clusters without
“centroids”.

The aforementioned drawbacks are intuitive, but they were verified through
experimentation, as well. The investigation showed us that as long as we select as
kernel nodes, the highest ranked nodes suggested by each heuristic, we manage
to cover almost all the final “best” communities. Favoring a little, one over the
other heuristic was not critical, provided that the bias was not tremendous. Thus,
we selected the top n/4 from PageRank, the top n/4 authorities, the top n/4 hubs
and n/4 randomly selected nodes, provided that they did not coincide with each
other. From the experimental investigation, we found out that this solution covers
85% to 100% of the clusters, depending on the characteristics of the Web graph.

Phase 2 (The clustering procedure) After setting up the “seed” clusters, the main
part of the algorithm consists of three steps and a procedure for performing clusters’
unions, which is repeated after each step.

Step 1 We expand the clusters one node at a time. Addition of a node takes place if
and only if the resulting function F (Eq. 5) of the new clustering is improving
the previous choice. This step is repeated until none of the clusters can be
expanded. At the end of each cycle, we check if we can perform cluster
union.

Step 2 It is similar to step 1, but the nodes are checked whether they can be
removed from the clusters. If a node removal results in a better function
F, then it is removed from the cluster. This step could be avoided if the
order of the “checks” in step 1 was perfect, i.e., have knowledge of the
future. Although it is counter-intuitive can be explained though the example
in Figure 6. Suppose that nodes 1 to 4 have already been to a cluster. This
cluster can not grow beyond this, since the addition of none of the nodes 5
to 7 can give better cohesion factor (Eq. 4). At step 3 though, 6 and 7 or 5, 6
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and 7 will be added to this cluster, depending on the order of consideration.
Though, it is clear that node 7 does not belong to this cluster, and thus it will
be removed at a later execution of step 2.

Step 3 We expand the clusters adding sets of nodes. Ideally, we should compute
all possible sets Si that are connected to each cluster x. For each Si the
function F would be tested to see whether Si should be merged to x. The
powerset S = {S1, S2, ...Sn} is huge and this generate-and-test is unfeasible.
So, we restrict S only to sets of size at most 6. This has minor effect in the
quality of clustering, since larger components will compose other clusters
which will be checked for merging with find-unions.

Finding Clusters’ Union (find-unions) For every pair of clusters a and b , this
procedure checks two conditions: the first one is whether the merging (union) of
the two clusters is possible. The second one is whether the merging results in a
better clustering. The selection of the union condition is very critical, because it
affects both the speed and the quality of the clustering results. The selection could
be performed dynamically, depending on the size of the graph and the quality we
need. A large number of alternatives can be devised for checking for similarity, for
instance see Spertus et al. [43]. Each one of them has its virtues and drawbacks, but
the final selected metric should be evaluated really fast and allow for the creation of
a reasonable number of large clusters. Some representative cluster merging policies
include the following:

1. |a ∩ b | ≥ 1 or (|a ∩ b | = 0 and a node ai in a is connected to a node b j in b): they
have at least one common node, or they are just connected.

2. |a ∩ b | ≥ 1: they have at least one common node.
3. |a ∩ b | ≥ √

max(|a|, |b |)) : the number of common nodes is at least the square
root of the size of the larger cluster.

4. |a ∩ b | > max(|a|, |b |)/2: their intersection is at least half the larger cluster.
5. NEVER: we merge a and b only iff a = b .

By selecting case 5 (NEVER), we get the best quality; by selecting case 1 we have the
higher speed of convergence. Although it is not possible to derive analytical formulas
supporting the appropriateness of one metric over the others, their experimental
evaluation, along the lines of the work by Spertus et al. [43], gave us useful hints
about their performance. We concluded that the fourth cluster-merging condition is
the best compromise between speed and quality.

When the merging condition holds, then the actual merging takes place iff the
resulting clustering is better than the previous one (Definition 5). The above two
phases are repeated until every node belongs to at least one cluster. If there are nodes
which do not belong to any cluster (“orphaned” nodes), then Phase 1 is repeated. The
selection for the new kernel nodes is made only for the set of “orphaned nodes”.

Finally, following similar reasoning to [41], the resulting clusters are checked
whether they are indeed correlated (Definition 4) and the non-correlated clusters
are deleted. This is necessary since, during the execution of the algorithm, the value
of c(x) for each cluster x is decreasing, but there is no guarantee that all the c(x)

functions will converge to a value less than 1.
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Time complexity Apparently, an exact analysis of the computational complexity of
the algorithm can not be carried out, due to its depedence on the characteristics of the
input graph and due to the randomized nature of the algorithm itself (i.e., order of
examination of the nodes). Though, in the next lines we provide a simplistic analysis
capturing the essential features of the algorithm and its polynomial-time nature.

Suppose that the input graph consists of n nodes with average degree davg, that
we have selected cinit initial kernel nodes, and when the algorithms terminates, it
produces c f in clusters; recall that c f = √

n. It is obvious that for two clusters c1 and c2,
we can check the truth of the merging condition 4 in time O(|c1| + |c2|), by scaning in
parallel the sorted lists of the node IDs of the clusters. Since c1 ≥ c2/2 and c2 ≥ c1/2,
we deduce that the merging operation terminares in time O(|ci|), where ci is the
largest cluster.

Firstly, we make some simplifying assumptions which will ease our analysis and
which represent average or worst cases for our algorithm: (a) the clusters contain
approximately the same number of nodes, (b) the clusters grow node-by-node
despite the fact that both routines check_1_node_expand and check_x_nodes_expand
are called, (c) the cluster-merging test fails after such elementary growths, (d) the
merging of clusters takes place only at the very final stage, when the clusters have
reached the maximum possible growth and then the algorith terminates, and (e)
each cluster node contains approximately davg/4 links to non-cluster nodes. The
assumption c is an extremely bad situation for the our algorithm, because it will call
too many times the find_unions routine and will apply it to too many pairs of clusters
since no merging takes place. Moreover, this node-by-node cluster growth accounts
for the effect of the check_1_node_remove routine.

Let the size of a typical cluster during an iteration of the algorithm execution is s1

(whose size is O(
√

n) in the worst case) and the number of clusters is nci. The value
of si ranges from 1 to the size of the final clusters, for which we can assume that is
equal to O( n√

n ) = O(
√

n).
Then, the cost of algorithm can be roughly estimated as

Cost = (|si|davg/4 ∗ cost(check_1_node_expand) +
nci ∗ (nci − 1)

2
∗ cost(check_1_node_expand) +

(si
6

) ∗ cost(check_x_nodes_expand)) ∗
final_cluster_size ∗ c f in ⇒

Cost = (|si| ∗ log2(n) ∗ O(|si|) + O(n2
c) ∗ O(|si|) + (|si|6) ∗ O(|si|))∗

O(
√

n) ∗ O(
√

n) ⇒

Cost = (|si| ∗ log2(n) ∗ O(|si|) + n ∗ O(|si|) + O(|si|7)) ∗ O(n) ⇒ Cost = O(n
9
2 ).
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In practice, the performance of the algorithm is two orders of magnitude faster
than this bound.

5.2 Community maintenance and outsourcing

There are a couple of issues regarding the communities identification, namely (a) the
ranking of the nodes inside the community to deal with cases that whole communities
cannot be replicated due to storage constraints, and (b) the incremental maintenance
of the communities, in case that new nodes are added/deleted in the Web site or the
linkage changes. In the present paper, we address only the first issue, which is the
most critical to the implementation of the proposed long-term prefetching scheme.
We leave the second issue for future work, since it comprises a whole new problem,
and we only point out some directions for coping with it.

It is quite probable that the generated communities do not fit into a surrogate
server due to space constraints or it may be the case that we wish to store part(s)
of community. In these cases, we must deal with the problem of ranking the
nodes of community, i.e., measuring the nodes’ relative “value”. There exist various
methods to do so, (a) classical graph traversal techniques, like breadth-first or depth-
first traversal, (b) spectral techniques, like PageRank, node degree, and (c) object
popularity-based techniques, etc. The adoption of each one of these alternatives
gives a variant to our original C3i algorithm. The combination of C3i with popularity
statistics, which results in the C3i-Hot, an off-line algorithm requiring knowledge of
request statistics or training, is an interesting variant providing a performance upper
bound for any on-line C3i algorithm. From the on-line variants of C3i, our preferred
choice is the exploitation of the PageRank, due its direct connection to the “random
surfer” model. The combination of C3i with PageRanking, referred to as C3i-PR is
the proposed on-line algorithm for the communities identification problem, whose
performance we are interested in quantifying.

The incremental community maintenance refers to the problem of identifying the
resulting communities, when new nodes are added or deleted to the original Web site.
Modification of the connections between existing nodes is another face of the above
problem; it is equivalent to deletion of current nodes and addition of new nodes
with the new connections. This problem has been addressed in Charikar et al. [5]
(and the references therein) for clusterings that strive to maintain constant number
of clusters or minimize the cluster diameter. Such heuristics could also be applied
in our case as well. Additionally, we could cope with the incremental clustering in
a greedy manner by assigning new nodes to the cluster that maximizes Eq. 4 or
to the cluster for which the “betweenness” [11] of this vertex is the largest among
all clusters. (The betweenness centrality index of a vertex measures the degree
to which this vertex is between pairs of other vertices, i.e., on shortest paths
connecting them.)

6 Simulation testbed

To evaluate the proposed methods we use trace-driven simulations developing an
analytic simulation environment. Therefore, we need a system model for simulating
the CDN’s functionalities and the internet topology. Furthermore, we need a collec-
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tion of Web users’ traces which access a Web site through a CDN, as well as, the
topology of this Web site (in order to identify the Web communities). Although we
can find several users’ traces on the Web4, we do not have the respective Web site’s
topology, and vice versa. Therefore, we have no other choice than to use artificial
workloads.

In this framework, we have developed a complete simulation environment, which
includes the following: (a) a system model simulating the CDN infrastructure, (b) a
network topology generator, (c) a client request stream generator, which captures the
main characteristics of Web users’ behavior, and (d) a Web site generator, modeling
file sizes, linkage, etc.

6.1 Simulation model

We have implemented a simulation model for CDNs, called CDNsim. It is based on
the ParaSol library,5 which is a parallel discrete event simulation system. The tool is
publicly available at http://oswinds.csd.auth.gr/∼cdnsim/.

In this work, we consider a CDN infrastructure consisting of N surrogate servers.
We assume the case of homogeneous servers (all the servers have the same storage
capacity) and each surrogate server’s cache can hold a percentage of the Web
site’s total size. Then, we group the users based on their domains. The number of
client groups is equal to the number of surrogate servers. Thus, each client group
is connected with only one surrogate server and contains a few thousands clients.
All CDN networking issues, like surrogate server selection, propagation, queueing,
bottlenecks and processing delays are computed dynamically via our simulation
model, which provides an implementation as close as possible to the working TCP/IP
protocol, implementing packet switching, packet retransmission upon misses, etc.
Finally, another important characteristic of CDNsim is that it manages efficiently the
objects stored in surrogate servers by modeling their disks using the Bloom filters, as
in Kulkarni et al. [26].

6.2 Network topology

Using the GT-ITM internetwork topology generator [51], we generated two random
network topologies: Waxman and Transit-stub with a total of 1008 nodes. In Waxman
model, the nodes are randomly assigned to locations on a plane, but an edge is
created between a pair of node u and v with probability P(u, v) = αe

−d
βL , where

d = |−→u − −→v |, L is the maximum Euclidean distance between any two vertices,
α > 0 and β ≤ 1. The Transit stub generates internetwork topologies composed of
interconnected transit-stub domains and better reflects the hierarchical structure of
real networks. We also constructed an AS-level Internet topology with a total of 3314
nodes, using BGP routing data collected from a set of 9 geographically-dispersed
BGP peers in January 2003. At this point, we should stress that obtaining a complete
and current AS Internet topology is a very difficult problem that can only be solved
heuristically, and although the challenge is quite old, a significant step towards this

4http://ita.ee.lbl.gov/html/traces.html
5http://www.cs.purdue.edu/research/PaCS/parasol.html

http://oswinds.csd.auth.gr/$sim $cdnsim/
http://ita.ee.lbl.gov/html/traces.html
http://www.cs.purdue.edu/research/PaCS/parasol.html
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goal has been made very recently by combining skitter, Routeviews, IRRs, IXPs [17].
In our work, we simply need a realistic AS topology, and not the complete and
curtent AS topology, to use for proving the benefits of the communities outsourcing
approach.

6.3 Web site generation

We used artificially generated Web graphs, constructed by the R-MAT tool [4]
coupled with a size generation procedure which models the heavy-tail feature of file
sizes. Specifically, the R-MAT tool produces synthetic but “realistic” Web-graphs,
which match many of the patterns found in real-world graphs, including power-
law and lognormal degree distributions, small diameter and “community” effects.
Although, we performed extensive experiments with various types of graphs, in
the paper, we present the results for a few representative graphs, namely dense,
moderate-density and sparse graphs with the following characteristics. The sparse
graphs consist of 4000 nodes and 15000 edges, the moderate-density graphs have 3000
nodes and 30000 edges, and the dense graphs consist of 2000 nodes and 40000 edges.
For each graph set (dense, moderate-density, sparse), we generated graphs with 4 up
to 1000 communities. Finally, for each of the generated density-community graph, we
“altered” it by adding some “noise” edges between the communities; the percentage
of these noise edges takes on low values (1% and 10%), leaving the communities
practically unchanged, and high values (20% and 50%) altering significantly the
picture of the communities.

6.4 Request streams generation

The workloads to the above Web graphs are streams of requests, called client
transactions. To generate transactions, we used the generator described in [32], which
reflects quite well the real access patterns. Specifically, this generator, given a Web
site graph, generates transactions as sequences of page traversals (random walks)
upon the site graph, by modeling the Zipfian distribution to pages. After producing
the transactions, we follow three steps in order to convert them to a log file.

Step 1. We define the number of clients and distribute the transactions to the
clients, so that each client will make at least one transaction).

Step 2. We define the time window that the transactions will be spread out; the
length of the window determines how “heavy” or “light” the system load is.
The default value that we used is one week.

Step 3. For each transaction, repeat the following:

Step 3a. Assign a client who has made no transactions yet to the current
transaction. If such a client does not exist, we select a client at
random.

Step 3b. A random timestamp is selected uniformly within the time win-
dow. This timestamp determines the starting time of the transac-
tion. The time interval between to successive requests of the same
transaction is selected uniformly with an average of 2 minutes.
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7 Performance evaluation

In our experiments, we use the following performance measures in order to evaluate
our proposed scheme:

1. Average response time (latency): the elapsed time between when a user issues a
request and when it receives the response; it measures the user satisfaction and
it should be as small as possible.

2. Replica factor: the percentage of the number of replica objects to the whole CDN
infrastructure with respect to the total outsourced objects, i.e.,

replica factor =
∑K′

i=1
Xi�outsourced_oi

N
∑K′

i=1 outsourced_oi

,

where K′ is the total outsourced objects, N is the number of surrogate servers and
Xi is the number of replicas of the outsourced object i. This measure quantifies
the cost of maintaining the replicas fresh and should be as small as possible.

Apparently, the measures of latency and replica factor are competing, in the sense
that we can achieve minimum latency (high users’ satisfaction) with high replication
redundancy. Such a solution though is not satisfactory because it would imply huge
coherency maintenance cost. Moreover, a large replica factor corresponds to a high
cost (for CDNs’ customers), since a large amount of objects should be hosted in
surrogate servers [37]. Taking into account that the most popular Web sites have
a competitive motivation to offer better service to their clients (low latency) at lower
cost (low replica factor), we should consider both these measures in order to evaluate
our proposed scheme.

7.1 Examined methods

In order to evaluate the proposed cohesion clustering scheme, we examined the
methods described in the sequel. The algorithms described as “Hot” are off-line,
in the sense that they have a priori knowledge of the request statistics and thus
can perform “optimal” replication decisions. Some others (described as “Random”)
are baseline in the sense that they made random decisions for the respective issue.
Apart from the proposed on-line C3i-PR algorithm and its off-line variant, the C3i-
Hot, we considered various combinations of randomly creating clusters/communities
(RandCl), with spectral (PageRank) or off-line (Hot) methods for ranking within
communities, to compare the resulting methods with our proposed technique
C3i-PR. These techniques are explained below:

1. Random Communities-based PageRank Replication (RandCl-PR): by randomly
selecting graph nodes, we form communities. For each community, its objects are
sorted in decreasing order of their PageRank value.

2. Random Communities-based Hot Replication (RandCl-Hot): by randomly
selecting graph nodes, we form communities. For each community, its objects
are sorted in decreasing order of their popularity.

3. Hot-based Replication (Top-Hot): each surrogate server replicates the most
popular objects from the whole Web site [20, 48–50], restricted by the available
cache space. There are no communities.
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4. PageRank-based Replication (Top-PR): each surrogate server replicates the
highest PageRanked objects from the whole Web site, under the restrictions of
the available cache space. There are no communities.

5. No Replication (W/O CDN): All the objects are placed on the origin server and
there is no CDN. This policy represents the “worst-case” scenario.

The placement of surrogates as well as the content (community) placement to
surrogates were performed according to the approach provided in [6].

7.2 Evaluation with synthetic data

7.2.1 Response time analysis

Using our testbed, we performed an analytic investigation of the performance of
the proposed on-line method C3i-PR with the aforementioned baseline and off-line
methods for different competing performance measures. We performed extensive
experiments with various graph sizes (in terms of the number of vertices, edges, com-
munities), with various client populations and request patterns, etc. The simulation
model has been configured so as the CDN’s infrastructure consists of 20 surrogate
servers, where each of them has cache capacity equal to 20% of the total objects’
volume.

In general, we expect the -Hot methods to exhibit better performance, since
they are off-line and have knowledge of the request statistics. Apparently, the W/O
CDN method will be the worst method. The interesting point to look at is C3i-PR’s
performance with respect to the performance of the off-line algorithms. If it is only
marginally worse than them, then our intuition about the role of communities in
the long-term prefetching will prove very effective in designing a blind, self-tuning
scheme. Of course, all the results should be interpreted by examining both the
average latency and the corresponding replication factor.

Firstly, we tested the competing algorithms, for each network topology (AS,
Transit-Stub and Waxman) with respect to the average response time, with varying
number of communities. The results are reported in Figures 7, 8 and 9 for sparse,
for moderate-density and for dense graphs, respectively. The y-axis represents time
units according to Parasol’s internal clock and not some physical time quantity, like
seconds, minutes. So the results should be interpreted by comparing the relative
performance of the algorithms. This means that if one technique gets a response
time 0.5 and some other gets 1.0, then in the real world the second one would be
twice as slow as the first technique.

In general, we observe that the best algorithms are those that exploit knowledge
of the future, e.g., the C3i-Hot over C3i-PR, the Top-Hot over Top-PR. This
observation does not hold for the pair of RandCL-, whose behavior is less stable.
In most of the cases, RandCL-Hot is better than RandCL-PR, but their performance
shows a lot of variation. This variation could not be filtered by the repetition of the
experiments, which is expected since it simply confirms the “randomness” in the
decision on the construction of the communities. The variation is so dramatic, that
in a case the RandCL-Hot method outperforms the C3i-PR method; though, this
behaviour is exceptional.

What is quite surprising and not exceptional in the performance of the RandCL-
techniques, is the fact that, despite the variation in their performance, they perform
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Figure 7 Average response
time for sparse web graphs.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  20  40  60  80  100  120

A
vg

. R
es

po
ns

e 
T

im
e

Number of Communities

AS Network Topology - Sparse Graphs

C3i-PR
C3i-Hot

RandCL-PR
RandCL-Hot

Top-PR
Top-Hot

WO-CDN

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120

A
vg

. R
es

po
ns

e 
T

im
e

Number of Communities

Transit-Stub Network Topology - Sparse Graphs

C3i-PR
C3i-Hot

RandCL-PR
RandCL-Hot

Top-PR
Top-Hot

WO-CDN

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  20  40  60  80  100  120

A
vg

. R
es

po
ns

e 
T

im
e

Number of Communities

Waxman Network Topology - Sparse Graphs

C3i-PR
C3i-Hot

RandCL-PR
RandCL-Hot

Top-PR
Top-Hot

WO-CDN

better than the Top- methods, across all network topologies (AS, Transit-Stub and
Waxman) and Web site graph types (sparse, moderate dense and dense). This
consistent behavior can not be ascribed to the “randomness”, but comprises a sign
of proof that treating content outsourcing in terms of communities does provide
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Figure 8 Average response
time for moderate-density
graphs.
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significant benefits, compared to the case when outsourcing is performed in a
“hotness” only basis.

Another point, which is apparent in almost all settings (in all topologies and in
all Web graphs), that deserves attention is the relatively bad performance of all
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Figure 9 Average response
time for dense graphs.
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algorithms in the case of the existence of only very few communities in the Web
site graph, i.e., the far left part of each graph. The existence of very few communities
in a Web site graph implies two facts. The first is that there are no “attractors” for the
visitors, thus the behavior of a surfer is completely random; the surfer might explore
the whole site, instead of focusing only on a relatively small subgraph of the site,
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i.e., a community. The second fact is that the content placement algorithm does not
have many alternatives in the placement of communities. The bad performance of
the algorithms based on “hotness” issues is explained by the former fact, whereas
the bad performance of the algorithms based on communities is attributed to both
of them.

Observing the performance of the W/O CDN we can see that it is practically
constant, without showing any visible up/down trend with growing number of com-
munities. This is a natural consequence, if we consider that it performs no clustering
or hot content selection. Any observable variations, in dense graphs for instance, are
due to the graph and request generation procedure.

Focusing now on the pair of our proposed algorithms we can see that in all network
topologies and site graphs they offer the smallest response time. The general trend is
that the response time is increasing with larger number of communities. This pattern
is also apparent in algorithms that do not exploit any form of clustering (e.g., Top-
Hot). The explanation for this increase is that, due to the request stream generation
method, which simulates a random surfer (see Subsection 6.4), as the number of
communities grows, the random surfers select different communities to visit, thus
spreading the “popularity mass” to different collections of objects.

The performance gap between the online and offline variant of C3i widens as the
number of communities grows, for the same reason mentioned before, since, when
the probability mass spreads into more communities, the highest pagerank nodes are
not those with the highest preference in the user visits (as generated with the request
generation procedure).

Examining the relative performance of the two C3i algorithms w.r.t. the graph size,
we observe that the performance gap between the two is larger for the case of sparse
graphs than for the cases of dense and moderately-dense graphs. This is explained
from the fact that in dense and moderately-dense graphs, the communities are not
blurred by the noise introduction procedure and thus can be effectively discovered
and exploited by C3i-PR.

Finally, with respect to the impact of the network topology on the performance
of the algorithms, the pattern that seems to prevail, especially in the case of dense
graphs, is that the Waxman topologies offer the lowest response times followed by
the AS topologies, whereas the Transit-Stub topologies perform worst. The uniform
placement of surrogates servers in the Waxman topology is advantageous, because
the existence of hierarchies, like those in AS and Transit Stub, imply longer travels
for the packets.

7.2.2 Replication redundancy analysis

Table 3 presents the algorithms’ performance with respect to the replica factor for the
AS network topology; analogous results were obtained for the other topologies. Each
table’s cell is the replica factor of the algorithm with respect to that of C3i-PR. A plus
sign indicates a surplus in replication redundancy, equal to the percentage value that
follows the plus sign, whereas a minus sign indicates a reduced redundancy, equal to
the percentage following the minus sign.

In general, replication and response time are interrelated and, in systems where
the storage capacity is unrestricted and the access pattern is stable, the pattern of
dependence among them follows the rule that the increased replication results in
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reduced response times, because the popular data are outsourced closer to the final
consumers. In such situations we quantify the content acceleration (response time
decrease) per unit of replication factor, e.g., a gain of X seconds in response time
results in an increase of the replication as of a factor Y.

Though, the situation changes when (a) the storage capacity is restricted, and (b)
when cooperation among the replication servers is allowed. This is exactly the case
of cooperative push-based content distribution. This architecture allows reduction in
the replication redundancy and in the response time, at the same time. This is the
explanation behind the behavior of the C3i- techniques which is in accordance with
the central idea of the cooperative push-based architecture; C3i- methods achieve
small response times and small replication factor. Regarding the performance of the
proposed techniques, we observe that C3i-PR is beaten only by its off-line variant,
and though in several cases the difference between the two is insignificant.

On the other hand, the family of Top- algorithms, which do not support coop-
eration, are not able to achieve the low response times of C3i- techniques, even
though they have a huge replication factor. Finally, RandCL- methods which support
the notion of communities can exploit to some extent the cooperation and achieve
improved response times, but at the cost of a high replication redundancy.

7.3 Evaluation in larger environments

To investigate the performance of the algorithms in larger parameter settings, we
conducted one experiment with 100 surrogate servers when each of them can hold
up to 20% of the data objects (keeping the rest of the parameters unchanged), and

Table 3 C3i-PR gain-loss (%) w.r.t. replica factor.

# Communities C3i-Hot RandCl-PR RandCl-Hot Top-PR Top-Hot

Sparse graphs
5 −7 +17 +25 +197 +197
12 +9 +73 +81 +345 +345
19 −12 +14 +21 +335 +335
43 −3 +49 +56 +324 +324
60 −2 +62 +33 +266 +266
86 +5 +83 +48 +431 +431
Moderate-density graphs
3 −3 +28 +26 +179 +179
19 +4 +38 +24 +298 +298
21 +2 +48 +28 +258 +258
53 +4 +49 +45 +315 +315
19 −12 +45 +41 +325 +325
108 +12 +23 +40 +266 +266
Dense graphs
6 −5 +26 +37 +214 +214
10 −2 +46 +53 +254 +254
27 +1 +92 +76 +490 +490
32 +9 +45 +41 +158 +158
39 +2 +33 +35 +139 +139
62 +11 +116 +92 +311 +311
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a second experiment for the case of 20 surrogate servers when each of them can
hold up to 40% of the data objects (keeping the rest of the parameters unchanged).
The results of the first experiment are illustrated in the left part of Figure 10, and of
the second experiment, are presented in the right part of the same figure; here, we
present only the results for the average response time, since the respective results
about the replication factor follow the same pattern as the experiments presented
earlier.

Evaluating the results of the first experiment, we see that an increase in the
number of surrogate servers results in a reduction of the average response time,
for the methods which exploit some form of intelligent content outsourcing. Also,
the impact of the number of communities is less intense, and the response time
increases less steeply. In the second experiment which examined the performance of
the algorithms with larger cache sizes, we observe a rather intuitive phenomenon; the
Top methods seem to outperform the RandCL methods. Indeed, with infinite cache
capacity the percentage of outsourced hot objects increases and thus contributes to
the reduction of the response time. Finally, for both experiments we observe that the
variation in the performance of the Rand method does exist, but it is less intense.

7.4 Evaluation with real data

We conclude the evaluation by reporting on some experiments conducted using a
real Web graph. The real Web site we used is the Stanford Web site from a Sep-
tember 2002 crawl, available at http://www.stanford.edu/∼sdkamvar/research.html
that consists of 281903 Web pages and ∼2.3 million links. Unfortunately, there are
not freely available large real site graphs with different characteristic to experiment
with, but for the sake of completeness we present some results with real data. This
site graph resembles the case of a synthetically generated graph, less dense than
the moderately-dense synthetic graphs, with very few communities. In particular, for
the synthetic moderately-dense graphs the ratio of links to nodes is 10, whereas for
this real graph is 8.15. Regarding the number and size of communities, we observe
that the ratio of number of nodes to number of communities is extremely small,
around 137, when this ratio for the synthetically generated graphs is always larger

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

A
vg

. R
es

po
ns

e 
T

im
e

Number of Communities

AS Network Topology - Moderately-dense Graphs

C3i-PR
C3i-Hot

RandCl-PR
RandCl-Hot

Top-PR
Top-Hot

W/O CDN

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70

A
vg

. R
es

po
ns

e 
T

im
e

Number of Communities

AS Network Topology - Sparse Graphs

C3i-PR
C3i-Hot

RandCl-PR
RandCl-Hot

Top-PR
Top-Hot

W/O CDN

Figure 10 Experiments in larger settings. Left: With 100 surrogate servers—surrogate cache capacity
equal to 20% of the total objects’ volume. Right: With 20 surrogate servers—surrogate cache capacity
equal to 40% of the total objects’ volume.
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Figure 11 Average response time with a real Web graph consisting of 2043 communities.

than 200. From these data, we conclude that the expected performance results should
be more or less similar to what is observed in the far left part of each graph of
Figure 7. Therefore, we do not expect significant differences in the performance of
the algorithms with respect to the response time.

We evaluate the performance of different replication schemes on a variety of
network topologies using this dataset. The network topologies, client populations
and request stream generation are the same as with synthetic data. The simulation
model has been configured so as the CDN’s infrastructure consists of 20 surrogate
servers, where each of them has cache capacity equal to 20% of the total objects’
volume. Our first experiment demonstrates the average response time for various
network topologies. The results of this set of experiments are reported in Figure 11.
From this figure, it can be seen that the W/O CDN approach, as expected, gives the
worst response times and the Top-Hot outperforms all the approaches, but this is
achieved at the expense of huge replication redundancy (refer to Table 4). On the
other hand, the average response time for C3i-PR, and of the rest of the algorithms,
is very close to Top-Hot’s value; the difference is in the order of 0.02, fairly smaller
than the differences observed in our earlier experiments.

Finally, Table 4 summarizes the algorithms’ performance with respect to the
replication factor for the AS topology (with the other topologies showing analogous
results). Again, we observe C3i-PR’ robustness and the inefficiency of Top-Hot and
Top-PR which, although outperform all the other approaches in terms of latency,
they present the worst replica factor.

Table 4 C3i-PR gain-loss
w.r.t. replica factor. C3i-PR vs 2043 Communities (%)

C3i-Hot −15
RandCl-PR +5
RandCl-Hot +5
Top-PR +1299
Top-Hot +1299
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The results exhibit the robustness and efficiency of the C3i-PR scheme, which
significantly reduces the average latency that the end-users see, keeping the replica-
tion redundancy at very low levels. The difference in performance (average response
time) between the artificial Web sites and the Stanford Web site is explained by the
fact that the former ones have on the average larger objects than the latter.

7.5 Summary of observations

Summarizing the above results, we see that the “champion” algorithm is C3i-Hot,
the proposed off-line communities-based prefetching scheme. It is able to exploit
the nice features of the cooperative push-based architecture, and the knowledge
of the user preferences. This policy is closely followed by the proposed on-line vari-
ant, C3i-PR, which is proved to be a high performance (low average response time),
low overhead (small replica factor) technique. Therefore, C3i-PR is an effective
and realistic solution, bridging the performance gap between user satisfaction (low
latency) and content provider benefit (small replica factor).

8 Conclusions

We addressed the long-term prefetching problem for CDNs. Differently from all
other relevant approaches, we refrained from using any request statistics in determin-
ing the outsourced objects. We exploited the plain assumption that “communities”
do exist within Web sites, which act as attractors for the visitors, due to their dense
linkage and the fact that they deal with coherent topics. We provided a new algorithm
to detect such communities; this algorithm is based on a new, quantitative definition
of the community structure. We made them the basic outsourcing unit, thus providing
the first “predictive” use of communities, which so far have been used for descriptive
purposes.

The virtue of our approach stems from the fact that a CDN provider (e.g.,
Akamai) can execute an on-line community identification algorithm, e.g., C3i-PR on
the Web site of its client before publishing its site so as to protect it from flash crowds,
and after collecting sufficient of reliable statistics can execute an off-line method, e.g.,
C3i-Hot, to better tune the overall system performance.

To gain a basic, though solid understanding of our proposed methods’ strengths,
we implemented a detailed simulation environment to test the communities-based
long-term prefetching method. Using both synthetic and real data we showed that
the proposed method provides low average client response time with low replication
redundancy.
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