
Replication based on Objects Load
under a Content Distribution Network

George Pallis, Konstantinos Stamos, Athena Vakali, Dimitrios Katsaros, Antonis Sidiropoulos,
Yannis Manolopoulos

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
gpallis@ccf.auth.gr, {kstamos, avakali, dkatsaro, asidirop, manolopo}@csd.auth.gr

Abstract
Users tend to use the Internet for “resource-hungry”

applications (which involve content such as video, audio
on-demand and distributed data) and at the same time,
more and more applications (such as e-commerce, e-
learning etc.) are relying on the Web. In this framework,
Content Distribution Networks (CDNs) are increasingly
being used to disseminate data in today's Internet,
providing a delicate balance between costs for Web
content providers and quality of services for Web
customers. The growing interest in CDNs is motivated by
a common problem across disciplines: how does one
reduce the load on the origin server and the traffic on the
Internet, and ultimately improve response time to users?
In this direction, crucial data management issues should
be addressed. A very important issue is the optimal
placement of the outsourced content to CDN’s servers.
Taking into account that this problem is NP complete, an
heuristic method should be developed. All the approaches
developed so far either take as criterion the network’s
latency or the workload. This paper develops a novel
technique to place the outsourced content to CDN’s
servers, integrating both the latency and the load.
Through a detailed simulation environment, using both
real and synthetic data, we show that the proposed
method can improve significantly the response time of
requests while keeping the CDNs’ servers’ load at a very
low level.

1. Introduction
The explosive growth of the Web has imposed a heavy

demand on networking resources and Web services. In
this framework, users often experience long and
unpredictable delays when retrieving Web pages from
remote sites. For instance, in networked online games a
game player’s gaming experience is negatively affected
by large propagation delays. Hence, an obvious solution

in order to improve the quality of Web services would be
the increase of the bandwidth, but such a choice involves
increasing economic cost. However, the higher bandwidth
would solve temporarily the problems since it would ease
the users to create more and more resource-hungry
applications, bunching again the network. Therefore, the
network limitations will remain or worsen unless effective
software solutions are also provided.

A traditional method to cure this situation includes
caching [7] (temporary storage of objects closer to the
consumer). Although, caching offers several benefits
(reduced network traffic, shorter response times), it has
drawbacks (small hit rates, compulsory misses). To
compensate for such problems, traditional caching is
coupled with another, complementary technique, the
prefetching [11]. Prefetching aims at predicting future
requests for Web objects and bringing those objects into
the cache in the background, before an explicit request is
made for them. The most common prefetching practice is
to make predictions based on the recent history of
requests of individual clients. Although, these methods
offer several benefits (reduced network traffic, shorter
response times) the content access is problematic, because
they do not improve availability during “flash crowd
events”1 and can not resolve the performance problems
related to Web server processing and Internet delays [5].

From the above it is occurred that standalone Web
servers are unable to provide reliable and scalable
services. In contrast, distributed solutions are a popular
way to improve the efficiency, reliability and scalability
of Web services. In this framework, the Content
Distribution Networks (CDNs), [13, 18] are targeted to
resolve such problems, by moving the content to the
“edge” of the Internet, closer to the end-user. With the

1 The flash crowd event occurs when numerous users access a Web site
simultaneously, such as the one occurred in September 11th 2001 when
users flooded popular news sites (with requests about the terrorist attack
in the US), and results in serious caching problems.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

“key” content outsourced as well as the “key” content
placement, the load on the origin server is reduced, the
connection from a local content delivery server is shorter
than between the origin Web server and the user, thus
reducing latency, and since many users share the CDN’s
servers, this service greatly increases the hit ratio. In this
paper, we focus on finding an effective policy for placing
the outsourced content to a CDN infrastructure.

The rest of the paper is organized as follows: Section 2
provides a background of CDNs and Section 3 outlines
the motivation and contribution of this work. Section 4
formulates the problem, and the proposed object
replication strategy is described. In Sections 5 and 6, the
simulation testbed is described and the performance
evaluation of the proposed scheme is shown. Finally,
Section 7 concludes the paper.

2. Background
A CDN (such as Akamai2, Mirror Image3 etc.) is a

network of cache servers, called surrogate servers, owned
by the same Internet Service Provider (ISP) that delivers
content to users on behalf of content providers. Typically,
a CDN topology involves 1) a set of surrogate servers
which cache the origin servers' content, 2) routers and
network elements which deliver content requests to the
optimal location and the optimal surrogate server, and 3)
an accounting mechanism which provides logs and
information to the origin servers.

Under a CDN infrastructure, the client-server
communication is replaced by two communication flows:
one between the client and the surrogate server, and
another between the surrogate server and the origin
server. This distinction into two communication flows
reduces congestions (particularly over popular servers)
and increases content distribution and availability.

Typically, each end-user sends requests for Web
objects to its nearest surrogate server in the CDN. The
specific details of how to handle a cache miss (i.e., the
policy that determines whether to fetch the object from
another surrogate server or the origin server) and the
meta-data information required at the surrogate server to
make such decisions are CDN-dependent. Similarly,
issues such as organization of the CDN into a hierarchy or
surrogate server groups, the degree of cooperation among
surrogate servers to service user requests, the policies
used to determine a suitable surrogate server to serve a
particular end-user are also CDN-specific. In order to
exploit the full potential of CDNs crucial data
management issues must be addressed. Up to now,
various content distribution policies have appeared in the
context of the CDNs: Uncooperative pull-based [18, 20],
cooperative pull-based [1], cooperative push-based and

2 http://www.akamai.org
3 http://www.mirror-image.com

uncooperative push-based are the basic approaches, as
reported in [13].

3. Motivation and Paper’s Contribution
The most important problems related to content

management on CDNs problems are the replica/surrogate
server placement [9, 15, 16], the content selection [2] and
the content replication [6], as reported in [13]. In this
paper, we study the content replication problem, which
refers to the issue of optimally replicating the outsourced
content in surrogate servers of a CDN. Under a CDN’s
infrastructure (with a given set of surrogate servers) and a
chosen content for delivery it is crucial to determine in
which surrogate servers the outsourced content should be
replicated. Authors in [6] conclude that Greedy-Global
heuristic algorithms are the best choice in making the
replication decisions between cooperating surrogate
servers. A naive and simple solution to this problem is to
replicate all the outsourced objects4 of the Web site (full-
mirroring) to all the surrogate servers. Such a solution is
not feasible/practical because, although disk prices are
continuously dropping, the sizes of Web objects increase
as well (e.g., video on demand, audio). Moreover, the
problem of updating such a huge collection of Web
objects is unmanageable.

Authors in [6] have shown that this problem is NP
complete. In particular, they have proved that it is
identical to the well-known NP-complete knapsack
problem [4]. This means that for a large number of
outsourced objects and surrogate servers is not feasible to
solve this problem optimally. Therefore, an heuristic
solution should be found.

In this framework, authors in [6] used four heuristics
methods: 1) random, 2) popularity, 3) greedy-single, and
finally 4) greedy-global. Apart from the naive, unscalable
approaches, where the outsourced objects either are
placed randomly to surrogate servers or are placed
according to their popularity, the greedy approaches are
not feasible to implement on real applications, due to their
high complexity. For instance, because of the huge
memory requirements, authors in [6] reported that they
could not run all the experiments for the greedy heuristic
policies.

In [17], the authors studied the content replication
problem from another point of view. Specifically, they
presented a set of greedy approaches where the placement
is occurred by balancing the loads and sizes of the
surrogate servers. The drawback of these algorithms is
their high complexity, since they require quite a long time
to produce a sufficient placement. A quite similar
approach has also been presented in [22].

4 We consider that the outsourced objects (the objects that will be
replicated to CDN’s surrogate servers) are known [2].

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

In [14], we presented a self-tuning, parameterless
algorithm, called lat-cdn, for optimally placing
outsourced objects in CDN’s surrogate servers, which is
based on network latency (an object’s latency is defined
as the delay between a request for a Web object and
receiving that object in its entirety). The main advantage
of this algorithm is that it does not require popularity
statistics, since the use of them has often several
drawbacks (e.g. quite a long time to collect reliable
request statistics, the popularity of each object varies
considerably etc.). However, this approach does not take
into consideration the load of the objects (the load of an
object is defined as the product of its access rate and
size). Therefore, in this approach, it is possible to
replicate in the same surrogate server objects with high
loads and, thus, during a flash crowd event the server will
be overloaded.

Therefore, we need an heuristic approach which will
consider both the object’s latency and the object’s load in
order to decide in which surrogate server to place the
outsourced objects. In this framework, at first, we
introduce a self-tunable strategy, which does not exploit
popularity statistics and does not use any administratively
set parameters in order to determine for each outsourced
object which is the best surrogate server to place its
replica. Then, the algorithm determines which one of the
outsourced objects will be replicated with respect to their
loads.

Another motivation of this work is to study the content
replication problem under an analytic CDN simulation
model which considers both the network traffic and the
server load. Most works [6], which have studied this
problem, do not take into account several critical factors,
such as the bottlenecks that are likely to occur in the
network, the number of sessions that can serve each
network element (e.g. router, surrogate server) etc. Thus,
the results that the authors presented in their works may
be misleading (they measure the number of traversed
nodes (hops) without considering the TCP/IP network
infrastructure). Therefore, the motivation for us is to
develop a flexible simulation model that simulates in
great detail the TCP/IP protocol as well as the main
characteristics of a cooperative push-based CDN
infrastructure model. Specifically, the main benefit of a
detailed CDN simulation model is that it gives a (closely)
realistic view to the CDNs’ developers about which will
be the profits for both the CDNs’ providers and CDNs’
customers if the proposed approach adapts to a real
CDN’s provider (e.g. Akamai).

In the context of this problem, the present paper makes
the following contributions:

We formulate the content replication problem for a
cooperative push-based scheme, dividing it into two
sub-problems.

We provide a novel strategy for optimally placing
outsourced objects in CDN’s surrogate servers,
integrating both the network’s latency and the
objects’ load.
We develop an analytic simulation environment to
test the efficiency of the proposed scheme. Using real
and synthetically generated test data, we show the
robustness and efficiency of the proposed method
which can reap performance benefits better than an
analogous heuristic method.

4. Problem Formulation
Here, we formulate the content replication problem for

cooperative-push based over CDNs, since it has been
proved to have the best results [6]. In this scheme, the
content is pushed (proactively) from the origin Web
server to CDNs’ surrogate servers and then, the surrogate
servers cooperate in order to reduce the replication and
update cost. Specifically, the CDN maintains a mapping
between content and surrogate servers, and each request
is directed to the closest surrogate server. This server may
or may not have a replica of the requested object. If it has,
the request is served locally, incurring no traffic over the
network backbone. Otherwise, it forwards the request to
the closest server that has the object replica and relays the
response to the client. In case that the requested object
has not been replicated by anyone surrogate server (the
requested object has not been outsourced), the request is
served by the origin server. Although this practice
requires cooperation among the surrogate servers
incurring some communication and management cost to
implement the cooperation, the key advantages of this
scheme is that the surrogate servers can efficiently share
the bandwidth and reduce the replication redundancy
(number of replicas deployed), and consequently reduces
the replication and update cost.

 Therefore, we consider a popular Web site that signs a
contract with a CDN’s provider with N surrogate servers,
each of which acts as an intermediary between the servers
and the end-users. We further assume that the surrogate
server i has Si bytes of storage capacity, where

},...,1{ Ni .
In order to formulate the placement’s cost function, we

assume that we have K outsourced objects. Each object k
has a size of sk, where },...,1{ Kk . In this context, we
define a variable which determines if an object k is stored
to surrogate server k.

)1(
0
1

otherwise
isurrogateatstorediskobjectif

f ik

The storage is subject to the constraint that the space
available at surrogate server i is bounded by

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

K

k
iikk Sfs

1
, where },...,1{ Ni . Furthermore, each

surrogate server can hold at most one replica of the
object.

Considering that all the outsourced objects are initially
placed on an origin server (the initial placement is
denoted by xo), the content replication problem may be
separated into two sub-problems:

1. Choice of the best surrogate server to replicate an
outsourced object

Specifically, for each outsourced object, we select its
optimal surrogate server such that it minimizes:

N

i

K

k
ikN

j
j

ik xD
p

xt
1 1

1

)()(cos (2),

where)(xDik is the distance to a replica of object k
from surrogate server i under the placement x (defines
the placement of outsourced objects to CDN’s surrogate
servers), i is the request rate for surrogate server i, and

kp is the probability that a user will request the object k.
For simplicity, we assume that the client request patterns
are homogenous. Therefore, the values of kp are the same
for all the surrogate servers. The distance may reflect
several metrics such as the number of traversed nodes
(hops), the latency, servers’ load etc. Here the distance
reflects the latency.

2. Arrange priorities for outsourced objects
replication

So far, we have made the optimal assignment of the
outsourced objects to the surrogate servers. From the
objects assigned to a single server we replicate the one
which has the maximum utility value. Here, the utility
value of each object is given by the following equation:

Utility_Valuek=loadk* latencyk, where
loadk=access_ratek*sk (3)

In the following equation, latencyk is the latency that
the object k produces if it is replicated to the surrogate
server which has been determined by the previous step,
loadk is the total load due to object k and access_ratek is
defined as the number of accesses of object k per unit
time. We name this algorithm il2p, which stands for the
integration of latency and load object placement in CDNs.
The following section describes this algorithm.

4.1. The il2p Algorithm
The main idea is to place the outsourced objects to

surrogate servers with respect to the latency and their
load. Initially all the outsourced objects are stored in the
origin server and all the CDN’s surrogate servers are
empty. Specifically, the proposed algorithm is
implemented into two phases:

Phase 1: For each outsourced object, we find its best
surrogate server to place it, without taking into
account its popularity (produces the minimum
network latency).
Phase 2: We select from all the pairs of outsourced
object – surrogate server that have been occurred in
the previous phase, the one which has the largest
utility value, and thus place this object to that
surrogate server.

il2p
{

Input:
obj[1…K] //outsourced objects
ss[1…N] //surrogate servers
Output:
a placement x of outsourced objects to surrogate

servers
while (there is free cache space on surrogate servers)

{
//Phase 1

 for (k=1; k<=K; k++)
 {
 min[obj[k]]= ;
 for (n=1; n<=N; n++)
 if (free cache size of ss[n] <= size obj[k] &&

 obj[k] does not exist in ss[n])
 {
 place obj[k] to ss[n];
 evaluate the latency(obj[k],ss[n]);
 if (latency (obj[k],ss[n]) < min[obj[k]])

//find the minimum cost
 min[obj[k]]=cost(obj[k],ss[n]);
 }
 }

//Phase 2
 for (k=1; k<=K; k++)
 evaluate the Utility_Value[k] for obj[k];

//Utility_Value[k]=load[k]*latency[k]
select the object y with the maximum Utility_Value;
 placement (object y, surrogate server z); //place the

object y to surrogate server z.
 }
}

Figure 1. The il2p Algorithm

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

The above process is iterated until all the surrogate
servers become full. As a result, an outsourced object may
be assigned to several surrogate servers, but a surrogate
server will have at maximum one copy of an outsourced
object. The detailed algorithm is described in pseudo-
code in Figure 1. Concerning the complexity of the il2p is
polynomial, since each phase requires polynomial time. In
order to by-pass this problem, we may use clusters of
objects [2].

5. Simulation Testbed
To evaluate the proposed methods we use trace-driven

simulations developing an analytic simulation
environment, which includes the following: a) a system
model simulating the CDN infrastructure, b) a network
topology generator, c) a Web site generator, modeling file
sizes, linkage, etc., and d) a client request stream
generator capturing the main characteristics of Web users'
behavior, since the real traces of CDNs’ providers are not
available

5.1. System Model

We have implemented a simulation model for CDNs
using the ParaSol library5, which is a parallel discrete
event simulation system (called CDNsim). Figure 2
depicts the basic screen shots of the CDNsim. We do not
provide any details for CDNsim tool (e.g. architecture
etc.) since it is beyond the scope of this paper.

In this work, we consider a CDN infrastructure
consisting of N=20 surrogate servers. We assume the case
of homogeneous servers (all the servers have the same
storage capacity). Then, we group the users based on their
domains. The number of client groups is equal to the
number of surrogate servers. Thus, each client group is
connected with only one surrogate server and contains a
few thousands clients. All CDN networking issues, like
surrogate server selection, propagation, queuing,
bottlenecks and processing delays are computed
dynamically via the simulation model, which provides an
implementation as close as possible to the working
TCP/IP protocol, implementing packet switching, packet
retransmission upon misses, etc. Finally, in order to
efficiently manage the outsourced objects stored in
surrogate servers, we modeled their disks using the
Bloom filters, as in [8].

As we referred above, we formulate the content
replication problem for cooperative-push based over
CDNs. In this context, CDNsim each surrogate server
maintains a cache that is typically stored on disk. Upon
receiving a request, the surrogate server services the
request from the local cache (in the event of a cache hit)

5 http://www.cs.purdue.edu/research/PaCS/parasol.html

or by fetching the requested object from another surrogate
server or the origin server (in the event of a cache miss).
Here, we make the assumption that the surrogate servers
are collaborating and each one knows a priori what
content is cached to all the other surrogate servers that
belong to the same CDN (via the CDN’s distribution
system). Furthermore, similar to previous work [2, 6, 19],
we consider that the Web objects fetched upon a cache
miss are not inserted into the surrogate's cache, but simply
forwarded to the requesting client.

Another important issue is to consider how the
proposed CDN environment tackles the problem of
staleness of cached objects, which is also known as cache
consistency problem. In general, cache consistency may
affect significantly the performance of a CDN scheme. In
general, consistency mechanisms fall in two categories:
strong consistency (accessed copies are always up to date)
and weak consistency (accessed copies might be stale).
However, the stability of the CDN architecture (fixed
number of surrogate servers) makes us to enforce a strong
consistency mechanism. This assumption is strengthened
by the fact that the probability of requesting a stale object
is very small [12].

5.2. Network Topology

Using the GT-ITM internetwork topology generator
[21], we generated a random network topology, called
Waxman, with a total of 1008 nodes. Specifically, in
Waxman model, the nodes are randomly assigned to
locations on a plane, but an edge is created between a pair

of node u and v with probability L
d

evuP),(, where

vud , L is the maximum Euclidean distance

between any two vertices, 0 and 1.
Furthermore, we constructed an AS-level Internet
topology with a total of 3037 nodes, using BGP routing
data collected from a set of 7 geographically-dispersed
BGP peers in April 2000.

5.3. Web Site Generation

In order to generate the outsourced objects, we used
artificially generated Web graphs, constructed by the R-
MAT tool [3]. The R-MAT produces realistic Web graphs
capturing the essence of each graph in only a few
parameters. In this framework, we create two graphs with
varying number of nodes (objects). Specifically, the
sparse-density graph has 4000 nodes, and a moderate-
density graph consists of 3000 nodes. Finally, we should
also assign a size for each node (a node represents a Web
object), since the R-MAT model gives us only the nodes
which are inter-communicated with each other. For this

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

task we have used the log-t distribution as described in
[10]. The total objects’ sizes for sparse graph and the
moderate graph are 746 MB and 1022 MB respectively.

5.4. Request Streams Generation

The next is to generate the workloads of the above
graphs. Specifically, these workloads are streams of Web
users’ requests, called client transactions. To generate
these transactions, we used the generator described in
[11], which given a Web site graph, generates
transactions as sequences of page traversals (random
walks) upon the site graph. After producing the
transactions, we follow three steps in order to convert
them to a log file.

Step 1. We define the number of clients and
distribute the transactions to the clients, so that each
client will make at least one transaction).
Step 2. We define the time window that the
transactions will be spread out; the length of the
window determines how “heavy” or “light” the
system load is. The default value that we used is one
week.
Step 3. For each transaction, repeat the following:

o Step 3a. Assign a client who has made no
transactions yet to the current transaction. If
such a client does not exist, we select a
client at random.

o Step 3b. A random timestamp is selected
uniformly within the time window. This
timestamp determines the starting time of
the transaction. The time interval between
two successive requests of the same
transaction is selected uniformly with an
average of 2 minutes.

6. Performance Evaluation
In our experiments, we use the average response time

measure in order to evaluate our proposed scheme. In
practice, we compute the elapsed time between when a
user issues a request and when it receives the response; it
measures the user satisfaction and it should be as small as
possible.

6.1. Examined Methods

In order to evaluate the proposed algorithm, we
examine also the following heuristics:

Figure 2. CDNsim: A Simulation Tool for Content Distribution Networks

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

Random: Assigns the outsourced objects to CDN’s
surrogate servers randomly subjected to the storage
constraints. Both the outsourced object and the
surrogate server are selected by uniform probability.
If the surrogate server already stores that object, a
new object and a new surrogate server are selected.
This heuristic plays the role of the baseline for our
experiments.
Popularity: Each surrogate server stores the most
popular outsourced objects among its clients. The
node sorts the objects in decreasing order of
popularity and stores as many outsourced objects in
this order as the storage constraint allows. The
surrogate server estimates the popularities by
observing the requests it receives from its clients.
Lat-cdn: The outsourced objects are placed to
surrogate servers with respect to the total network’s
latency, without taking into account the objects’
popularity. Specifically, each surrogate server stores
the outsourced objects which produce the maximum
latency.

6.2. Synthetic Data Experimentation

Based on our testbed, we performed an analytic
investigation of the performance of the proposed object
replication method, il2p, with the aforementioned
methods. We performed extensive experiments with
various graph sizes (in terms of number of vertices and
edges), with various client populations and request
patterns, etc. Due to the interest of space, in this paper we
present only a small selection of the result obtained.

Our first experiment demonstrates the average
response time for the moderate-density Web graph (3000
outsourced objects) on both network topologies with
respect to surrogate servers’ cache size. Specifically, the
size of the cache is expressed in terms of the percentage
of the total number of bytes of the Web site. The results
of this set of experiments are reported in Figure 3. The x-
axis represents the cache size of CDN’s surrogate servers,
while the y-axis represents the average response time.
From this Figure, it can be seen that the il2p approach,
gives the best response times for both network topologies.
The second best is the lat-cdn, which is followed by
Popularity and Random. Furthermore, we observe that as
the cache size increases, the average response time also
increases. Although it looks quite strange at first sight
(one may expect to have lower times), it is explained by
the fact that the larger in size caches may satisfy more
requests. Thus, the average response time is increased, as
the size of surrogate servers’ caches increases.

Figure 3. Average Response Time for Moderate-
density Web Graphs (3000 objects)

In Figure 4, we plot the results from experiments with
4000 outsourced objects (sparse-density Web graph). The
results are very similar to the results from the previous
experiment. In general, for both network topologies, the
il2p approach outperforms all the other heuristics.

6.3. Real Data Experimentation

We further conclude the evaluation by reporting on
some experiments conducted using outsourced objects
from a real Web site. The real Web site we used is the
Stanford Web site from a September 2002 crawl6 that
consists of 281903 Web objects. Note, that the network
topologies, client populations and request stream
generation are the same as with synthetic data.

Our experiment demonstrates the average response
time for both network topologies. The results are reported
in Figure 5. As previous, the x-axis represents the cache
size of CDN’s surrogate servers, while the y-axis
represents the average response time. Notice that in this
experiment we use a different scale for the cache sizes
(compared with the previous ones) due to the large
amount of objects of the Stanford Web site. From this
Figure, it can be seen that the il2p has quite similar
performance with lat-cdn and Random. On the other
hand, the il2p outperforms the Popularity approach. The
only exception is when the surrogate servers have very
small cache sizes, where the Popularity has the best
performance. Another observation that we make is that
the response times are too small. The reason is that the

6It is available at http://www.stanford.edu/ ~sdkamvar/ research.html

AS Network Topology - Moderate Graph

0,17
0,18
0,19
0,2
0,21
0,22
0,23

1% 3% 5% 10%

Cache Size

Av
g.

 R
es

po
ns

e
Ti

m
e

Popularity
Random
Lat-cdn
ll2p

Waxman Network Topology - Moderate Graph

0,18

0,2

0,22

0,24

0,26

1% 3% 5% 10%

Cache Size

Av
g.

 R
es

po
ns

e
Ti

m
e

Popularity
Random
Lat-cdn
ll2p

AS Network Topology - Moderate Graph

0,17
0,18
0,19
0,2
0,21
0,22
0,23

1% 3% 5% 10%

Cache Size

Av
g.

 R
es

po
ns

e
Ti

m
e

Popularity
Random
Lat-cdn
il2p

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

majority of objects of Stanford Web site have very small
sizes.

Figure 4. Average Response Time for Sparse-
density Web Graphs (4000 objects)

Waxman Network Topology - Stanford Web site

0,067

0,068

0,069

0,07

0,1% 0,3% 0,5% 1%

Cache Size

Av
g.

 R
es

po
ne

 T
im

e

Popularity
Random
Lat-cdn
il2p

Figure 5. Average Response Time for Real Web
Site

In general, from our results, we can conclude that the
best performance is obtained by the il2p heuristic, taking
into account the surrogate servers are cooperated with
each other. The difference in performance between il2p
and the other three heuristics is quite significant
especially for artificial Web sites (in most cases around

5% absolute improvement with respect to lat-cdn7, and
consistently around 25% absolute improvement with
respect to other two heuristics), which have on average
larger objects in size than the Stanford Web site. Despite
the low improvement rates on Stanford Web site, the il2p
is still in most cases beneficial. In this context, it should
be noticed that the role of CDNs is focused on improving
the QoS of the explosive growth of resource-hungry
applications in Web sites, such as Digital Television,
Interactive TV, Video On Demand (VOD), etc.
Therefore, the medium to large size objects are of interest
in the il2p context.

7. Conclusions
In this paper, we addressed the content replication

problem for CDNs. Differently from all other relevant
heuristics approaches, we partition this problem into two
sub-problems. The first one defines the pairs of
outsourced object - surrogate server which achieve the
lowest latency, refrained from using any request statistics.
The second one determines which objects to replicate.
Our goal is to find an efficient placement so that when
clients fetch objects from the nearest surrogate server, the
average response time is minimized. Implementing a
detailed simulation environment, the CDNs’ developers
may have a (closely) realistic view about which will be
the profits for both the CDNs’ providers and CDNs’
customers if the proposed approach adapts to a real
CDN’s provider (e.g. Akamai). The results have shown
that the proposed algorithm outperforms the other
examined heuristic methods in a cooperative push-based
scheme.

8. References
[1] S. Annapureddy, M. J. Freedman, and D. Mazières, “Shark:
Scaling File Servers via Cooperative Caching”, Proceedings of
the 2nd USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI), Boston, USA, May 2005.
[2] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz,
“Efficient and Adaptive Web Replication using Content
Clustering”, IEEE Journal on Selected Areas in
Communications, 21(6), Aug. 2003, pp. 979-994.
[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
Recursive Model for Graph Mining”, Proceedings of the 4th
SIAM International Conference on Data Mining, Orlando,
Florida, USA, 2004.
[4] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-Completeness”,
Freeman, New York, 1979.
[5] Y. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash
Crowds and Denial of Service Attacks: Characterization and
Implications for CDNs and Web Sites”, Proceedings of the 11th

7The low gains of il2p compared to lat-cdn can be explained by the fact
that it is used the same process in order to choose the best surrogate
servers to replicate the outsourced objects.

Waxman Network Topology - Sparse Graph

0,17

0,19

0,21

0,23

0,25

0,27

1% 3% 5% 10%

Cache Size

Av
g.

 R
es

po
ne

 T
im

e

Popularity
Random
Lat-cdn
il2p

AS Network Topology - Sparse Graph

0,17

0,19

0,21

0,23

0,25

0,27

1% 3% 5% 10%

Cache Size

Av
g.

 R
es

po
ns

e
Ti

m
e

Popularity
Random
Lat-cdn
il2p

AS Network Topology - Stanford Web site

0,062

0,063

0,064

0,1% 0,3% 0,5% 1%

Cache Size

Av
g.

 R
es

po
ne

 T
im

e

Popularity
Random
Lat-cdn
il2p

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

International World Wide Web Conference (WWW), Honolulu,
Hawaii, USA, May 2002, pp. 293–304.
[6] J. Kangasharju, J. Roberts, and K. W. Ross, “Object
Replication Strategies in Content Distribution Networks”,
Computer Communications, 25(4), Apr. 2002, 367-383.
[7] D. Katsaros and Y. Manolopoulos, “Caching in Web
Memory Hierarchies”, Proceedings of the ACM Symposium on
Applied Computing, Nicosia, Cyprus, Mar. 2004, pp. 1109-
1113.
[8] P. Kulkarni and P. Shenoy, “Scalable Techniques for
Memory-efficient CDN Simulations”, Proceedings of the 12th
International World Wide Web Conference (WWW), Hungary,
May 2003, pp. 609-618.
[9] B. Li, M. J. Golin, G. F. Ialiano, and X. Deng, “On the
Optimal Placement of Web Proxies in the Internet”, Proceedings
of the Conference on Computer Communications, 18th Annual
Joint Conference of the IEEE Computer and Communications
Societies, Networking the Next Generation (IEEE INFOCOM),
New York, USA, Mar. 1999, pp.1282-1290.
[10] M. Mitzenmacher and B. Tworetzky, “New Models and
Methods for File Size Distributions”, Proceedings of the 41th
Annual Allerton Conference on Communication, Control, and
Computing, Illinois, USA, Oct. 2003, pp. 603-612.
[11] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A
Data Mining Algorithm for Generalized Web Prefetching”,
IEEE Transactions on Knowledge Data Engineering, 15(5),
May 2003, pp. 1155-1169.
[12] V.N. Padmanabhan, and L. Qiu, “The Content and Access
Dynamics of a Busy Web Site: findings and implications”, In
Proceedings of ACM SIGCOM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, Stockholm, Sweden, Aug. 2000, 111-123.
[13] G. Pallis and A. Vakali, “Insight and Perspectives for
Content Delivery Networks”, Communications of the ACM
(CACM), 49(1), Jan. 2006, pp. 101-106.
[14] G. Pallis, A. Vakali, K. Stamos, A. Sidiropoulos, D.
Katsaros, Y. Manolopoulos, “A Latency-based Object
Placement Approach in Content Distribution Networks”,
Proceedings of the 3rd Latin American Web Congress (La-Web
2005), IEEE Press, Buenos Aires, Argentina, Oct. 2005, pp.
140-147.
[15] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the
Placement of Web Server Replicas”, Proceedings of the
Conference on Computer Communications, 20th Annual Joint
Conference of the IEEE Computer and Communications
Societies, Networking the Next Generation (IEEE INFOCOM),
Anchorage, Alaska, USA, Apr. 2001, pp. 1587-1596.
[16] M. Szymaniak, G. Pierre, and M. Van Steen, “Latency-
Driven Replica Placement”, Proceedings of the International
Symposium on Applications and the Internet (SAINT), Trento,
Italy, Feb. 2005, pp. 399-405.
[17] S.S.H. Tse: “Approximate Algorithms for Document
Placement in Distributed Web Servers”,
Parallel and Distributed Systems, IEEE Transactions on
16(6), Jun. 2005, pp. 489 – 496.
[18] A. Vakali and G. Pallis, “Content Delivery Networks:
Status and Trends”, IEEE Internet Computing, 7(6), 2003, pp.
68-74.
[19] B. Wu and A.D. Kshemkalyani, “Objective-Greedy
Algorithms for Long-term Web Prefetching”, Proceedings of the
3rd IEEE International Symposium on Network Computing and

Applications (NCA 2004), Cambridge, MA, USA, Aug.-Sep.
2004, pp. 61-68.
[20] H. Yu and A. Vahdat, “Minimal Replication Cost for
Availability”, Proceedings of the 21st Annual ACM Symposium
on Principles of Distributed Computing (PODC), Monterey,
California, USA, Jul. 2002, pp. 98-107.
[21] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to
Model an Internetwork”, Proceedings of the Conference on
Computer Communications, 15th Annual Joint Conference of
the IEEE Computer and Communications Societies, Networking
the Next Generation (IEEE INFOCOM), San Francisco, USA,
Mar. 1996, pp. 594-602.
[22] L. Zhuo, C-L Wing, F. C. M. Lau, “Load Balancing in
Distributed Web Server Systems with Partial Document
Replication”, Proceedings of the 2002 International Conference
on Parallel Processing (ICPP'02), Vancouver, BC, Canada, Aug.
2002, pp. 305-313.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

