
1

EvoNet Flying Circus

How to Build an

Evolutionary Algorithm

Brought to you by P. Adamidis

The EvoNet Training Committee

EvoNet Flying Circus

The Steps

 In order to build an evolutionary algorithm

there are a number of steps that we have to

perform:

 Design a representation

 Decide how to initialise a population

 Design a way of mapping a genotype to a

phenotype

 Design a way of evaluating an individual

EvoNet Flying Circus

Further Steps

 Design suitable mutation operator(s)

 Design suitable recombination operator(s)

 Decide how to manage our population

 Decide how to select individuals to be parents

 Decide how to select individuals to be

replaced

 Decide when to stop the algorithm

EvoNet Flying Circus

Designing a Representation

 We have to come up with a method of

representing an individual as a genotype.

 There are many ways to do this and the way

we choose must be relevant to the problem

that we are solving.

 When choosing a representation, we have to

bear in mind how the genotypes will be

evaluated and what the genetic operators

might be

EvoNet Flying Circus

Example: Discrete Representation

(Binary alphabet)

CHROMOSOME

GENE

 Representation of an individual can be using discrete values (binary,

integer, or any other system with a discrete set of values).

 Following is an example of binary representation.

EvoNet Flying Circus

Example: Discrete Representation

(Binary alphabet)

8 bits Genotype

Phenotype:

• Integer

• Real Number

• Schedule

• ...

• Anything?

2

EvoNet Flying Circus

Example: Discrete Representation

(Binary alphabet)

Phenotype could be integer numbers

Genotype:

1*27 + 0*26 + 1*25 + 0*24 + 0*23 + 0*22 + 1*21 + 1*20 =

128 + 32 + 2 + 1 = 163

= 163

Phenotype:

EvoNet Flying Circus

Example: Discrete Representation

(Binary alphabet)

Phenotype could be Real Numbers
e.g. a number between 2.5 and 20.5 using 8

binary digits

  9609.135.25.20
256

163
5.2 x

= 13.9609

Genotype: Phenotype:

EvoNet Flying Circus

Example: Discrete Representation

(Binary alphabet)

Phenotype could be a Schedule
e.g. 8 jobs, 2 time steps

Genotype:

=

1

2

3

4

5

6

7

8

2

1

2

1

1

1

2

2

Job
Time

Step

Phenotype

EvoNet Flying Circus

Example: Real-valued representation

 A very natural encoding if the solution we are

looking for is a list of real-valued numbers,

then encode it as a list of real-valued

numbers! (i.e., not as a string of 1’s and 0’s)

 Lots of applications, e.g. parameter

optimisation

EvoNet Flying Circus

Example: Real valued representation,

Representation of individuals

 Individuals are represented as a tuple of n

real-valued numbers:

 The fitness function maps tuples of real

numbers to a single real number:

Rx

x

x

x

X i

n





















 ,
2

1



RRf n :

EvoNet Flying Circus

Example: Order based representation

 Individuals are represented as permutations

 Used for ordening/sequencing problems

 Famous example: Travelling Salesman

Problem where every city gets a assigned a

unique number from 1 to n. A solution could

be (5, 4, 2, 1, 3).

 Needs special operators to make sure the

individuals stay valid permutations.

3

EvoNet Flying Circus

Example: Tree-based representation

 Individuals in the population are trees.

 Any S-expression can be drawn as a tree of

functions and terminals.

 These functions and terminals can be anything:

 Functions: sine, cosine, add, sub, and, If-Then-Else,

Turn...

 Terminals: X, Y, 0.456, true, false, p, Sensor0…

 Example: calculating the area of a circle:

2
* rp

*

p *

r r

EvoNet Flying Circus

Example: Tree-based representation,

Closure & Sufficiency

 We need to specify a function set and a terminal set.

It is very desirable that these sets both satisfy closure

and sufficiency.

 By closure we mean that each of the functions in the

function set is able to accept as its arguments any

value and data-type that may possible be returned by

some other function or terminal.

 By sufficient we mean that there should be a solution

in the space of all possible programs constructed

from the specified function and terminal sets.

EvoNet Flying Circus

Initialization

 Uniformly on the search space … if possible

 Binary strings: 0 or 1 with probability 0.5

 Real-valued representations: Uniformly on a given

interval (OK for bounded values only)

 Seed the population with previous results or

those from heuristics. With care:

 Possible loss of genetic diversity

 Possible unrecoverable bias

EvoNet Flying Circus

Example: Tree-based representation

 Pick a function f at random from the function set F.

This becomes the root node of the tree.

 Every function has a fixed number of arguments

(unary, binary, ternary, …. , n-ary), z(f). For each of

these arguments, create a node from either the

function set F or the terminal set T.

 If a terminal is selected then this becomes a leaf

 If a function is selected, then expand this function

recursively.

 A maximum depth is used to make sure the process

stops.

EvoNet Flying Circus

Example: Tree-based representation,

Three Methods

 The Full grow method ensures that every non-back-

tracking path in the tree is equal to a certain length by

allowing only function nodes to be selected for all

depths up to the maximum depth - 1, and selecting

only terminal nodes at the lowest level.

 With the Grow method, we create variable length

paths by allowing a function or terminal to be placed

at any level up to the maximum depth - 1. At the

lowest level, we can set all nodes to be terminals.

 Ramp-half-and-half create trees using a variable

depth from 2 till the maximum depth. For each depth

of tree, half are created using the Full method, and

the other half are created using the Grow method.
EvoNet Flying Circus

Getting a Phenotype from our

Genotype

 Sometimes producing

the phenotype from the

genotype is a simple

and obvious process.

 Other times the

genotype might be a set

of parameters to some

algorithm, which works

on the problem data to

produce the phenotype

Genotype
Problem

Data

Phenotype

Growth

Function

4

EvoNet Flying Circus

Evaluating an Individual

 This is by far the most costly step for real

applications
do not re-evaluate unmodified individuals

 It might be a subroutine, a black-box

simulator, or any external process

(e.g. robot experiment)

 You could use approximate fitness - but not

for too long

EvoNet Flying Circus

More on Evaluation

 Constraint handling - what if the phenotype

breaks some constraint of the problem:

 penalize the fitness

 specific evolutionary methods

 Multi-objective evolutionary optimization

gives a set of compromise solutions

EvoNet Flying Circus

Mutation Operators

 We might have one or more mutation

operators for our representation.

 Some important points are:

 At least one mutation operator should allow every

part of the search space to be reached

 The size of mutation is important and should be

controllable.

 Mutation should produce valid chromosomes

EvoNet Flying Circus

Example: Mutation for Discrete

Representation

1 1 1 1 1 1 1 before

1 1 1 0 1 1 1 after

Mutation usually happens with probability pm

for each gene

mutated gene

EvoNet Flying Circus

Example: Mutation for real valued

representation

Perturb values by adding some random noise

Often, a Gaussian/normal distribution N(0,) is

used, where

• 0 is the mean value

•  is the standard deviation

and

x’i = xi + N(0,i)

for each parameter

EvoNet Flying Circus

Example: Mutation for order based

representation (Swap)

7 8 3 4 1 2 6 5

7 8 3 4 6 2 1 5

Randomly select two different genes

and swap them.

5

EvoNet Flying Circus

Example: Mutation for tree based

representation

*

2 *

r r

*

p *

r r

Single point mutation selects one node

and replaces it with a similar one.

EvoNet Flying Circus

Recombination Operators

 We might have one or more recombination

operators for our representation.

 Some important points are:

 The child should inherit something from each parent.

If this is not the case then the operator is a mutation

operator.

 The recombination operator should be designed in

conjunction with the representation so that

recombination is not always catastrophic

 Recombination should produce valid chromosomes

EvoNet Flying Circus

Example: Recombination for Discrete

Representation

Whole Population: . . .

Each chromosome is cut into n pieces which are
recombined. (Example for n=1)

1 1 1 1 1 1 1 0 0 0 0 0 0 0 parents

cut cut

1 1 1 0 0 0 0 0 0 0 1 1 1 1 offspring

EvoNet Flying Circus

Example: Recombination for real

valued representation

Discrete recombination (uniform crossover): given

two parents one child is created as follows

a d b f c e g h

F D G E H C B A
a b C E d H g f

EvoNet Flying Circus

Example: Recombination for real

valued representation

Intermediate recombination (arithmetic crossover):

given two parents one child is created as follows

a d b f c e

F D E C B A

(a+A)/2 (b+B)/2 (c+C)/2 (e+E)/2 (d+D)/2 (f+F)/2



EvoNet Flying Circus

Example: Recombination for order

based representation (Order1)

 Choose an arbitrary part from the first parent and copy

this to the first child

 Copy the remaining genes that are not in the copied part

to the first child:

• starting right from the cut point of the copied part

• using the order of genes from the second parent

• wrapping around at the end of the chromosome

Repeat this process with the parent roles reversed

6

EvoNet Flying Circus

Example: Recombination for order

based representation (Order1)

7 8 3 4 1 2 6 5 7 8 1 6 5 2 3 4

8 1 2

7, 3, 4, 6, 5

4, 3, 6, 7, 5

Order

7 8 5 4 1 2 3 6

Parent 1 Parent 2

Child 1

EvoNet Flying Circus

Example: Recombination for tree-

based representation

*

2 *

r r *

+

r /

1 r

Two sub-trees are selected

for swapping.

p * (r + (l / r))
p

2 * (r * r)

EvoNet Flying Circus

Example: Recombination for tree-

based representation

*

+

r /

1 r

p

*

2 *

r r

*

p *

r r *

2 +

r /

1 r

Resulting in 2 new

expressions

EvoNet Flying Circus

Selection Strategy

 We want to have some way to ensure that

better individuals have a better chance of

being parents than less good individuals.

 This will give us selection pressure which will

drive the population forward.

 We have to be careful to give less good

individuals at least some chance of being

parents - they may include some useful

genetic material.

EvoNet Flying Circus

Example: Fitness proportionate

selection

 Expected number of times fi is selected for

mating is: ff i

Best

Worst

 Better (fitter) individuals

have:
 more space

 more chances to be

selected

EvoNet Flying Circus

Example: Fitness proportionate

selection

Disadvantages:

 Danger of premature convergence because

outstanding individuals take over the entire

population very quickly

 Low selection pressure when fitness values

are near each other

 Behaves differently on transposed versions of

the same function

7

EvoNet Flying Circus

Example: Fitness proportionate

selection

Fitness scaling: A cure for FPS

 Start with the raw fitness function f.

 Standardise to ensure:
 Lower fitness is better fitness.

 Optimal fitness equals to 0.

 Adjust to ensure:
 Fitness ranges from 0 to 1.

 Normalise to ensure:
 The sum of the fitness values equals to 1.

EvoNet Flying Circus

Example: Tournament selection

 Select k random individuals, without

replacement
 k is called the size of the tournament

 Take the best

EvoNet Flying Circus

Example: Ranked based selection

 Individuals are sorted on their fitness value

from best to worse. The place in this sorted

list is called rank.

 Instead of using the fitness value of an

individual, the rank is used by a function to

select individuals from this sorted list. The

function is biased towards individuals with a

high rank (= good fitness).

EvoNet Flying Circus

Example: Ranked based selection

 Fitness: f(A) = 5, f(B) = 2, f(C) = 19

 Rank: r(A) = 2, r(B) = 3, r(C) = 1

 Function: h(A) = 3, h(B) = 5, h(C) = 1

 Proportion on the roulette wheel:

 p(A) = 11.1%, p(B) = 33.3%, p(C) = 55.6%

1

)1)((
min)(maxmin)(






n

xr
xh

EvoNet Flying Circus

Replacement Strategy

 The selection pressure is also affected by the

way in which we decide which members of

the population to kill in order to make way for

our new individuals.

 We can use the stochastic selection methods

in reverse, or there are some deterministic

replacement strategies.

 We can decide never to replace the best in

the population: elitism.

EvoNet Flying Circus

Elitism

 Should fitness constantly improves?

 Re-introduce in the population previous best-so-far

(elitism) or

 Keep best-so-far in a safe place (preservation)

 Theory:

 GA: preservation mandatory

 ES: no elitism sometimes is better

 Application: Avoid user’s frustration

8

EvoNet Flying Circus

Recombination vs Mutation

 Recombination

 modifications depend on the whole population

 decreasing effects with convergence

 exploitation operator

 Mutation

 mandatory to escape local optima

 strong causality principle

 exploration operator

EvoNet Flying Circus

Recombination vs Mutation (2)

 Historical “irrationale”

 GA emphasize crossover

 ES and EP emphasize mutation

 Problem-dependent rationale:

 fitness partially separable?

 existence of building blocks?

 Semantically meaningful recombination operator?

Use recombination if useful!

EvoNet Flying Circus

Stopping criterion

 The optimum is reached!

 Limit on CPU resources:

Maximum number of fitness evaluations

 Limit on the user’s patience:

After some generations without improvement

EvoNet Flying Circus

Algorithm performance

 Never draw any conclusion from a single run

 use statistical measures (averages, medians)

 from a sufficient number of independent runs

 From the application point of view

 design perspective:

find a very good solution at least once

 production perspective:

find a good solution at almost every run

EvoNet Flying Circus

Algorithm Performance (2)

 Remember the WYTIWYG principal:

“What you test is what you get” - don´t tune

algorithm performance on toy data and

expect it to work with real data.

EvoNet Flying Circus

Key issues

Genetic diversity

 differences of genetic characteristics in the

population

 loss of genetic diversity = all individuals in the

population look alike

 snowball effect

 convergence to the nearest local optimum

 in practice, it is irreversible

9

EvoNet Flying Circus

Key issues (2)

Exploration vs Exploitation

 Exploration =sample unknown regions

 Too much exporation = random search, no

convergence

 Exploitation = try to improve the best-so-far

individuals

 Too much expoitation = local search only …

convergence to a local optimum

Island Model

